cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103246 Numbers y, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.

This page as a plain text file.
%I A103246 #20 Nov 14 2019 19:58:41
%S A103246 21,27,33,55,57,63,75,77,81,87,91,93,99,105,111,115,117,119,123,125,
%T A103246 129,133,135,143,147,153,155,161,165,171,177,183,185,187,189,195,201,
%U A103246 203,207,213,215,217,219,225,235,237,243,247,249,253,255,259,265,267,273
%N A103246 Numbers y, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.
%C A103246 The example is the smallest such triple in terms of x. In terms of y, 220^2 + 21^2 = 221^2 is the smallest such triple.
%C A103246 Evidently the triples here are ordered so that x is even and y is odd. - _Robert Israel_, Oct 22 2018
%H A103246 Robert Israel, <a href="/A103246/b103246.txt">Table of n, a(n) for n = 1..10000</a>
%H A103246 MathForFun, <a href="http://groups.yahoo.com/group/mathforfun/message/9962">Pythagorean triples</a>
%H A103246 MathForFun, <a href="/A103246/a103246.pdf">Pythagorean triples</a> [Cached copy]
%H A103246 Chenglong Zou, Peter Otzen, Cino Hilliard, <a href="/A103246/a103246.txt">Pythagorean triplets</a>, digest of 6 messages in mathfun Yahoo group, Mar 19, 2005.
%e A103246 x=16, y=63, 16^2 + 63^2 = 65^2. 63 is the 6th entry in the list.
%p A103246 N:= 1000: # to get all terms <= N
%p A103246 Res:= NULL:
%p A103246 for m from 1 to N by 2 do
%p A103246   for n from 1 to m-2 by 2 while m*n <= N do
%p A103246     if igcd(m,n) > 1 then next fi;
%p A103246     if not isprime(m*n) and not isprime((m^2+n^2)/2) then
%p A103246       Res:= Res, m*n;
%p A103246     fi
%p A103246 od od:
%p A103246 sort(convert({Res},list)); # _Robert Israel_, Oct 22 2018
%o A103246 (PARI) pythtri(n) = { local(a,b,c=0,k,x,y,z,vy,j); w = vector(n*n); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 &!isprime(x) &!isprime(y) &!isprime(z), if(gcd(x,y)==1&gcd(x,z)==1&gcd(y,z)==1, c++; w[c]=y; ) ) ) ); vy=vector(c); w=vecsort(w); for(j=1,n*n, if(w[j]>0, k++; vy[k]=w[j]; ) ); for(j=1,200, if(vy[j+1]<>vy[j],print1(vy[j]",")) ) }
%K A103246 easy,nonn
%O A103246 1,1
%A A103246 _Cino Hilliard_, Mar 19 2005