cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103248 Numbers x, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.

This page as a plain text file.
%I A103248 #21 Nov 14 2019 17:48:59
%S A103248 16,24,36,44,56,60,64,68,76,84,88,92,96,100,104,116,120,124,128,132,
%T A103248 136,140,144,152,156,160,164,168,172,176,184,192,196,200,204,208,212,
%U A103248 216,220,224,228,236,240,244,252,256,264,272,276,280,284,288,296,300,304
%N A103248 Numbers x, without duplication, in Pythagorean triples x,y,z where x,y,z are relatively prime composite numbers.
%H A103248 MathForFun, <a href="http://groups.yahoo.com/group/mathforfun/message/9962">Pythagorean triples</a>
%H A103248 Chenglong Zou, Peter Otzen, Cino Hilliard, <a href="/A103246/a103246.txt">Pythagorean triplets</a>, digest of 6 messages in mathfun Yahoo group, Mar 19, 2005.
%e A103248 x=16, y=63, 16^2 + 63^2 = 65^2. 16 is the 1st entry in the list.
%o A103248 (PARI) pythtri(n) = { local(a,b,c=0,k,x,y,z,vx,vy,wx,wyj); wx=wy= vector(n*n); for(a=1,n, for(b=1,n, x=2*a*b; y=b^2-a^2; z=b^2+a^2; if(y > 0 &!isprime(x) &!isprime(y) &!isprime(z), if(gcd(x,y)==1&gcd(x,z)==1&gcd(y,z)==1, c++; wy[c]=y; wx[c]=x; print(x","y","z); \ write("pythtri.txt",x","y","z); ) ) ) ); vy=vx=vector(c); wy=vecsort(wy); wx=vecsort(wx); for(j=1,n*n, if(wx[j]>0, k++; vx[k]=wx[j]; ); ); for(j=1,200, if(vx[j+1]<>vx[j],print1(vx[j]",")) ) }
%K A103248 easy,nonn
%O A103248 1,1
%A A103248 _Cino Hilliard_, Mar 19 2005