A103254 Positive integers x such that there exist positive integers y and z satisfying x^3 + y^3 = z^2.
1, 2, 4, 7, 8, 9, 10, 11, 14, 16, 18, 21, 22, 23, 25, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 44, 46, 49, 50, 56, 57, 63, 64, 65, 70, 72, 78, 81, 84, 86, 88, 90, 91, 92, 95, 98, 99, 100, 104, 105, 110, 112, 114, 121, 122, 126, 128, 129, 130, 132, 136, 140, 144, 148, 152, 154, 158, 160, 162, 169, 170, 175, 176, 177, 183, 184, 189, 190, 193, 196, 198, 200
Offset: 1
Keywords
Examples
x=7, y=21, 7^3 + 21^3 = 98^2. 7 is the 4th term in the list. Other solutions are (x, y, z)=(1, 2, 3), (4, 8, 24), (7, 21, 98), (9, 18, 81), (10, 65, 525), (11, 37, 228), (14, 70, 588), (16, 32, 192), (21, 7, 98), (22, 26, 168), (23, 1177, 40380), ...
Links
- Fritz Beukers, The Diophantine equation Ax^p+By^q=Cz^r, Duke Math. J. 91 (1998), 61-88.
Crossrefs
See A103255 for another version.
Programs
-
Magma
[ k : k in [1..200] | exists{P : P in IntegralPoints(EllipticCurve([0,k^3])) | P[1] gt 0 and P[2] ne 0 } ]; // Geoff Bailey, Jan 28 2007
Extensions
Recomputed and extended to 48 terms by Geoff Bailey (geoff(AT)maths.usyd.edu.au) using Magma, Jan 28 2007
Terms 104..200 added by Joerg Arndt, Sep 29 2012
Comments