cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103257 Number of partitions of 2n free of multiples of 5. All odd parts occur with multiplicity 2 or 4. the even parts occur at most twice.

This page as a plain text file.
%I A103257 #26 Aug 31 2024 23:28:42
%S A103257 1,2,4,6,10,14,20,28,40,54,72,96,126,164,212,272,346,436,548,684,850,
%T A103257 1052,1296,1588,1940,2362,2864,3462,4172,5012,6004,7172,8548,10160,
%U A103257 12048,14256,16830,19828,23312,27356,32040
%N A103257 Number of partitions of 2n free of multiples of 5. All odd parts occur with multiplicity 2 or 4. the even parts occur at most twice.
%C A103257 Convolution of A261796 and A261797. - _Vaclav Kotesovec_, Sep 01 2015
%H A103257 Robert Israel, <a href="/A103257/b103257.txt">Table of n, a(n) for n = 0..10000</a>
%H A103257 Noureddine Chair, <a href="http://arxiv.org/abs/hep-th/0409011">Partition Identities From Partial Supersymmetry</a>, arXiv:hep-th/0409011v1, 2004.
%F A103257 G.f.: (theta_4(0, x^3)*theta_4(0, x^5))/theta_4(0, x).
%F A103257 G.f.: (E(2)*E(3)^2*E(5)^2) / (E(1)^2*E(6)*E(10)) where E(k) = Product_{n>=1} 1-q^(k*n). - _Joerg Arndt_, Sep 01 2015
%F A103257 a(n) ~ exp(Pi*sqrt(7*n/15)) / sqrt(15*n). - _Vaclav Kotesovec_, Sep 01 2015
%e A103257 E.g. a(5) = 14 because 10 can be written as 8+2 = 8+1+1 = 6+4 = 6+2+2 = 6+2+1+1 = 6+1+1+1+1 = 4+4+2 = 4+4+1+1 = 4+3+3 = 4+2+2+1+1 = 4+2+1+1+1+1 = 3+3+2+2 = 3+3+2+1+1 = 3+3+1+1+1+1.
%p A103257 series(product(((1+x^k)*(1-x^(3*k))*(1-x^(5*k)))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))),k=1..100),x=0,100);
%t A103257 nmax = 50; CoefficientList[Series[Product[((1+x^k)*(1-x^(3*k))*(1-x^(5*k)))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 01 2015 *)
%o A103257 (PARI)  q='q+O('q^33); E(k)=eta(q^k);
%o A103257 Vec( (E(2)*E(3)^2*E(5)^2) / (E(1)^2*E(6)*E(10)) ) \\ _Joerg Arndt_, Sep 01 2015
%Y A103257 Cf. A098151, A261796, A261797.
%K A103257 nonn
%O A103257 0,2
%A A103257 _Noureddine Chair_, Jan 27 2005
%E A103257 Example corrected by _Vaclav Kotesovec_, Sep 01 2015
%E A103257 Maple program fixed by _Vaclav Kotesovec_, Sep 01 2015