cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103259 Number of partitions of 2n prime to 3,5 with all odd parts occurring with even multiplicities. There is no restriction on the even parts.

This page as a plain text file.
%I A103259 #23 Sep 01 2015 19:43:29
%S A103259 1,2,4,6,10,14,20,28,40,54,72,96,126,164,212,274,350,444,560,704,878,
%T A103259 1092,1352,1668,2048,2506,3056,3714,4500,5436,6552,7872,9436,11280,
%U A103259 13456,16012,19014,22532,26648,31452,37052,43572,51148,59940,70128,81922,95548
%N A103259 Number of partitions of 2n prime to 3,5 with all odd parts occurring with even multiplicities. There is no restriction on the even parts.
%C A103259 This is also the sequence A103257/(theta_4(0,x^(15))).
%H A103259 Alois P. Heinz, <a href="/A103259/b103259.txt">Table of n, a(n) for n = 0..10000</a>
%H A103259 Noureddine Chair, <a href="http://arxiv.org/abs/hep-th/0409011">Partition Identities From Partial Supersymmetry</a>, arXiv:hep-th/0409011v1, 2004.
%F A103259 G.f.: (theta_4(0, x^3)*theta_4(0, x^5))/(theta_4(0, x)*theta_4(0, x^(15))).
%F A103259 G.f.: (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) where E(k) = prod(n>=1, 1-q^k ). - _Joerg Arndt_, Sep 01 2015
%F A103259 a(n) ~ exp(2*Pi*sqrt(2*n/15)) / (2^(3/4) * 15^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 01 2015
%e A103259 a(5) = 14 because 10 can be written as 8+2 = 8+1+1 = 4+4+2 = 4+4+1+1 = 4+2+2+2 = 4+2+2+1+1 = 4+2+1+1+1+1 = 4+1+1+1+1+1+1 = 2+2+2+2+2 = 2+2+2+2+1+1 = 2+2+2+1+1+1+1 = 2+2+1+1+1+1+1+1 = 2+1+1+1+1+1+1+1+1 = 1+1+1+1+1+1+1+1+1+1.
%p A103259 series(product((1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))),k=1..100),x=0,100);
%t A103259 nmax = 50; CoefficientList[Series[Product[(1+x^k)*(1-x^(3*k))*(1-x^(5*k))*(1+x^(15*k))/((1-x^k)*(1+x^(3*k))*(1+x^(5*k))*(1-x^(15*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Sep 01 2015 *)
%o A103259 (PARI)  q='q+O('q^33); E(k)=eta(q^k);
%o A103259 Vec( (E(2)*E(3)^2*E(5)^2*E(30)) / (E(1)^2*E(6)*E(10)*E(15)^2) ) \\ _Joerg Arndt_, Sep 01 2015
%Y A103259 Cf. A102346, A103257.
%K A103259 nonn
%O A103259 0,2
%A A103259 _Noureddine Chair_, Feb 15 2005
%E A103259 Example corrected by _Vaclav Kotesovec_, Sep 01 2015
%E A103259 Maple program corrected by _Vaclav Kotesovec_, Sep 01 2015