This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103264 #9 Sep 07 2015 02:30:44 %S A103264 1,1,1,1,1,1,1,1,1,1,1,2,2,3,3,3,3,4,4,5,5,5,6,7,8,8,9,9,10,11,13,14, %T A103264 15,16,18,19,21,23,24,26,28,31,34,37,39,42,45,49,53,56,60,64,69,75,81, %U A103264 86,92,98,105,113,122,130,138,147,157,168,179,191,202,215,230,246,262,279 %N A103264 Number of partitions of n into distinct parts prime to 3, 5 and 7. %F A103264 G.f.: product_{k>0}((1+x^k)*(1+x^(15k))*(1+x^(21k))*(1+x^(35k)))/((1+x^(3k))*(1+x^(5k))*(1+x^(7k))*(1+x^(105k))). %F A103264 a(n) ~ exp(4*Pi*sqrt(n/105)) / (sqrt(2) * 105^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2015 %e A103264 a(19)=5 because 19 = 17 + 2 = 16 + 2 + 1 = 13 + 4 + 2 = 11 + 8. %p A103264 series(product((1+x^k)*(1+x^(15*k))*(1+x^(21*k))*(1+x^(35*k)))/((1+x^(3*k))*(1+x^(5*k))*(1+x^(7*k))*(1+x^(105*k))),k=1..100),x=0,100); %t A103264 CoefficientList[ Series[ Product[(1 + x^k)(1 + x^(15k))(1 + x^(21k))(1 + x^(35k))/((1 + x^(3k))(1 + x^(5k))(1 + x^(7k))(1 + x^(105k))), {k, 100}], {x, 0, 73}], x] (* _Robert G. Wilson v_, Feb 22 2005 *) %K A103264 nonn %O A103264 0,12 %A A103264 _Noureddine Chair_, Feb 21 2005 %E A103264 More terms from _Robert G. Wilson v_, Feb 22 2005