A103280 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].
1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
Offset: 0
Examples
Array begins: 1,2,6,16,44,120,328,896,2448,6688,... 1,3,9,27,81,243,729,2187,6561,19683, ... 1,4,14,48,164,560,1912,6528,22288,76096,... 1,5,21,85,341,1365,5461,21845,87381,349525,... 1,6,30,144,684,3240,15336,72576,343440,1625184,... 1,7,41,231,1289,7175,39913,221991,1234633,6866503,... ...
Crossrefs
Programs
-
PARI
T12(N, n) = if(n==1,1,if(n==2,N+2,(N+2)*T12(N,n-1)-(2*N-2)*T12(N,n-2))) for(k=0,10,print1(k,": ");for(i=1,10,print1(T12(k,i),","));print())
Formula
T(N, 1)=1, T(N, 2)=N+2, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).
Comments