cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103280 Array read by antidiagonals, generated by the matrix M = [1,1,1;1,N,1;1,1,1].

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 4, 9, 16, 1, 5, 14, 27, 44, 1, 6, 21, 48, 81, 120, 1, 7, 30, 85, 164, 243, 328, 1, 8, 41, 144, 341, 560, 729, 896, 1, 9, 54, 231, 684, 1365, 1912, 2187, 2448, 1, 10, 69, 352, 1289, 3240, 5461, 6528, 6561, 6688, 1, 11, 86, 513, 2276, 7175, 15336, 21845
Offset: 0

Views

Author

Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 27 2005

Keywords

Comments

Consider the matrix M = [1,1,1;1,N,1;1,1,1];
Characteristic polynomial of M is x^3 + (-N - 2)*x^2 + (2*N - 2)*x.
Now (M^n)[1,2] is equivalent to the recursion a(1) = 1, a(2) = N+2, a(n) = (N+2)a(n-1)+(2N-2)a(n-2). (This also holds for negative N and fractional N.)
a(n+1)/a(n) converges to the upper root of the characteristic polynomial ((N + 2) + sqrt((N - 2)^2 + 8))/2 for n to infinity.
Columns of array follow the polynomials:
0
1
N + 2
N^2 + 2*N + 6
N^3 + 2*N^2 + 8*N + 16
N^4 + 2*N^3 + 10*N^2 + 24*N + 44
N^5 + 2*N^4 + 12*N^3 + 32*N^2 + 76*N + 120
N^6 + 2*N^5 + 14*N^4 + 40*N^3 + 112*N^2 + 232*N + 328
N^7 + 2*N^6 + 16*N^5 + 48*N^4 + 152*N^3 + 368*N^2 + 704*N + 896
N^8 + 2*N^7 + 18*N^6 + 56*N^5 + 196*N^4 + 528*N^3 + 1200*N^2 + 2112*N + 2448
etc.

Examples

			Array begins:
1,2,6,16,44,120,328,896,2448,6688,...
1,3,9,27,81,243,729,2187,6561,19683, ...
1,4,14,48,164,560,1912,6528,22288,76096,...
1,5,21,85,341,1365,5461,21845,87381,349525,...
1,6,30,144,684,3240,15336,72576,343440,1625184,...
1,7,41,231,1289,7175,39913,221991,1234633,6866503,...
...
		

Crossrefs

Cf. A103279 (for (M^n)[1, 1]), A002605 (for N=0), A000244 (for N=1), A007070 (for N=2), A002450 (for N=3), A030192 (for N=4), A152268 (for N=5), A006131 (for N=-1), A000400 (bisection for N=-2), A015443 (for N=-3), A083102 (for N=-4).

Programs

  • PARI
    T12(N, n) = if(n==1,1,if(n==2,N+2,(N+2)*T12(N,n-1)-(2*N-2)*T12(N,n-2)))
    for(k=0,10,print1(k,": ");for(i=1,10,print1(T12(k,i),","));print())

Formula

T(N, 1)=1, T(N, 2)=N+2, T(N, n)=(N+2)*T(N, n-1)-(2*N-2)*T(N, n-2).