This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103298 #21 Feb 23 2021 18:21:43 %S A103298 0,1,2,2,3,3,3,4,4,4,5,5,5,5,6,6,6,6,7,7,7,7,7,7,8,8,8,8,8,8,9,9,9,9, %T A103298 9,9,9,10,10,10,10,10,10,10,11,11,11,11,11,11,11,12,12,12,12,12,12,12, %U A103298 12,13,13,13,13,13,13,13,13,13,13,14,14,14,14,14 %N A103298 Number of segments of a perfect ruler with length n. %C A103298 For definitions, references and links related to complete rulers see A103294. %H A103298 F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, <a href="/A103298/b103298.txt">Table of n, a(n) for n = 0..244</a> %H A103298 F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, <a href="https://dx.doi.org/10.21227/cd4b-nb07">MRLA search results and source code</a>, Nov 6 2020. %H A103298 F. Schwartau, Y. Schröder, L. Wolf and J. Schoebel, <a href="https://doi.org/10.1109/OJAP.2020.3043541">Large Minimum Redundancy Linear Arrays: Systematic Search of Perfect and Optimal Rulers Exploiting Parallel Processing</a>, IEEE Open Journal of Antennas and Propagation, 2 (2021), 79-85. %H A103298 <a href="/index/Per#perul">Index entries for sequences related to perfect rulers.</a> %F A103298 a(n) = A046693(n) - 1. %e A103298 a(11)=5 means that a perfect ruler with length 11 has 5 segments. %Y A103298 Cf. A046693, A103297. %K A103298 nonn %O A103298 0,3 %A A103298 _Peter Luschny_, Feb 28 2005 %E A103298 Extended using A046693 terms by _Vaclav Kotesovec_, Oct 20 2019