This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103319 #14 Feb 16 2025 08:32:56 %S A103319 3,7,39916801,13763753091226345046315979581580902400000001, %T A103319 33452526613163807108170062053440751665152000000001, %U A103319 4470115461512684340891257138125051110076800700282905015819080092370422104067183317016903680000000000000001 %N A103319 Primes of the form p! + 1 where p is prime. %C A103319 The values of p are 2, 3, 11, 37, 41, 73 which is A093804 (with a different definition). Subsequence of A088332 (primes of the form n! + 1). %D A103319 R. K. Guy, Unsolved Problems in Number Theory, Section A2. %H A103319 R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv preprint arXiv:1202.3670, 2012 - From N. J. A. Sloane, Jun 13 2012 %H A103319 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FactorialPrime.html">Factorial Prime</a> %H A103319 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers.</a> %e A103319 2 and 2! + 1 = 3 are prime, so 3 is a member. %t A103319 Select[Table[p!+1,{p,Prime[Range[30]]}],PrimeQ] (* _Harvey P. Dale_, Nov 28 2019 *) %Y A103319 Cf. A093804, A002981, A088332, A103318. %K A103319 hard,nonn %O A103319 1,1 %A A103319 _Jonathan Sondow_, Jan 31 2005