This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103323 #27 Jan 18 2022 10:15:38 %S A103323 1,1,1,1,1,2,1,1,4,3,1,1,8,9,5,1,1,16,27,25,8,1,1,32,81,125,64,13,1,1, %T A103323 64,243,625,512,169,21,1,1,128,729,3125,4096,2197,441,34,1,1,256,2187, %U A103323 15625,32768,28561,9261,1156,55,1,1,512,6561,78125,262144,371293,194481,39304,3025,89 %N A103323 Square array T(n,k) read by antidiagonals: powers of Fibonacci numbers. %C A103323 Number of ways to create subsets S(1), S(2),..., S(k-1) such that S(1) is in [n] and for 2<=i<=k-1, S(i) is in [n] and S(i) is disjoint from S(i-1). %D A103323 A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 138. %H A103323 Alois P. Heinz, <a href="/A103323/b103323.txt">Antidiagonals n = 1..100, flattened</a> %F A103323 T(n, k) = A000045(k)^n, n, k > 0. %F A103323 T(n, k) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_{k-1}>=0, C(n, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{k-2}, i_{k-1}) ] ... ]]. %e A103323 Square array T(n,k) begins: %e A103323 1, 1, 2, 3, 5, 8, ... %e A103323 1, 1, 4, 9, 25, 64, ... %e A103323 1, 1, 8, 27, 125, 512, ... %e A103323 1, 1, 16, 81, 625, 4096, ... %e A103323 1, 1, 32, 243, 3125, 32768, ... %e A103323 1, 1, 64, 729, 15625, 262144, ... %e A103323 ... %p A103323 A:= (n, k)-> (<<1|1>, <1|0>>^n)[1, 2]^k: %p A103323 seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # _Alois P. Heinz_, Jun 17 2014 %t A103323 T[n_, k_] := Fibonacci[k]^n; Table[T[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Jun 16 2015 *) %o A103323 (PARI) T(n,k)=fibonacci(k)^n %Y A103323 Rows include A000045, A007598, A056570, A056571, A056572, A056573, A056574. %Y A103323 Main diagonal gives A100399. %Y A103323 Cf. A244003. %Y A103323 Cf. A105317, A254719. %K A103323 nonn,tabl,easy %O A103323 1,6 %A A103323 _Ralf Stephan_, Feb 02 2005