A103324 Square array T(n,k) read by antidiagonals: powers of Lucas numbers.
2, 4, 1, 8, 1, 3, 16, 1, 9, 4, 32, 1, 27, 16, 7, 64, 1, 81, 64, 49, 11, 128, 1, 243, 256, 343, 121, 18, 256, 1, 729, 1024, 2401, 1331, 324, 29, 512, 1, 2187, 4096, 16807, 14641, 5832, 841, 47, 1024, 1, 6561, 16384, 117649, 161051, 104976, 24389, 2209, 76
Offset: 1
Examples
2,1,3,4,7,11,18, 4,1,9,16,49,121,324, 8,1,27,64,343,1331,5832, 16,1,81,256,2401,14641,104976, 32,1,243,1024,16807,161051,1889568, 64,1,729,4096,117649,1771561,34012224,
References
- A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, identity 140.
Formula
T(n, k) = A000032(k)^n, n>=1, k>=0.
T(n, k) = Sum[i_1>=0, Sum[i_2>=0, ... Sum[i_{k-1}>=0, 2^i_1*C(n, i_1)*C(n-i_1, i_2)*C(n-i_2, i_3)*...*C(n-i_{k-2}, i_{k-1}) ] ... ]].