This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103325 #36 Sep 05 2024 15:40:22 %S A103325 32,1,243,1024,16807,161051,1889568,20511149,229345007,2535525376, %T A103325 28153056843,312079600999,3461619737632,38387392786601, %U A103325 425733547012443,4721411479245824,52361450147627807,580696556856146851,6440026990881070368,71420978989035821749 %N A103325 Fifth powers of Lucas numbers. %D A103325 Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227. %H A103325 G. C. Greubel, <a href="/A103325/b103325.txt">Table of n, a(n) for n = 0..950</a> %H A103325 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (8,40,-60,-40,8,1). %F A103325 a(n) = A000032(n)^5 = A000032(n)*A099923(n). %F A103325 a(n) = L(5*n) + 5*(-1)^n*L(3*n) + 10*L(n), L(n) = A000032, the Lucas numbers. %F A103325 G.f.: (32-255*x-1045*x^2+960*x^3+235*x^4-x^5)/((1-x-x^2)*(1+4*x-x^2)* (1-11*x-x^2)). [T. Mansour, Australas. J. Comb. 30 (2004), 207] - _R. J. Mathar_, Oct 26 2008 %t A103325 Table[LucasL[n]^5, {n,0,30}] (* or *) CoefficientList[Series[(32 - 255 x - 1045 x^2 + 960 x^3 + 235 x^4 - x^5)/((1-x-x^2)*(1+4*x-x^2)*(1-11*x- x^2)), {x, 0, 50}], x] (* _G. C. Greubel_, Dec 21 2017 *) %o A103325 (Magma) [ Lucas(n)^5 : n in [0..120]]; // _Vincenzo Librandi_, Apr 14 2011 %o A103325 (PARI) a(n)=(fibonacci(n-1)+fibonacci(n+1))^5 \\ _Charles R Greathouse IV_, Jun 11 2015 %o A103325 (PARI) x='x+O('x^30); Vec((32-255*x-1045*x^2+960*x^3+235*x^4-x^5)/((1-x-x^2)*(1+4*x-x^2)* (1-11*x-x^2))) \\ _G. C. Greubel_, Dec 21 2017 %Y A103325 Fifth row of array A103324. %Y A103325 Cf. A000032, A099923. %K A103325 nonn,easy %O A103325 0,1 %A A103325 _Ralf Stephan_, Feb 03 2005