cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103333 Number of closed walks on the graph of the (7,4) Hamming code.

This page as a plain text file.
%I A103333 #19 Sep 09 2018 02:21:29
%S A103333 1,3,24,192,1536,12288,98304,786432,6291456,50331648,402653184,
%T A103333 3221225472,25769803776,206158430208,1649267441664,13194139533312,
%U A103333 105553116266496,844424930131968,6755399441055744,54043195528445952,432345564227567616
%N A103333 Number of closed walks on the graph of the (7,4) Hamming code.
%C A103333 Counts closed walks of length 2n at the degree 3 node of the graph of the (7,4) Hamming code. With interpolated zeros, counts paths of length n at this node.
%C A103333 a(n+1) = A157176(A016945(n)). - _Reinhard Zumkeller_, Feb 24 2009
%C A103333 For n>0: a(n) = A083713(n) - A083713(n-1). - _Reinhard Zumkeller_, Feb 22 2010
%D A103333 David J.C. Mackay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 19
%H A103333 Nathaniel Johnston, <a href="/A103333/b103333.txt">Table of n, a(n) for n = 0..500</a>
%H A103333 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (8).
%F A103333 G.f.: (1-5*x)/(1-8*x);
%F A103333 a(n) = (3*8^n + 5*0^n)/8.
%F A103333 a(n) = 8*a(n-1) for n > 0. - _Harvey P. Dale_, Mar 02 2012
%p A103333 seq((3*8^n+5*`if`(n=0,1,0))/8,n=0..20); # _Nathaniel Johnston_, Jun 26 2011
%t A103333 Join[{1},NestList[8#&,3,20]] (* _Harvey P. Dale_, Mar 02 2012 *)
%Y A103333 Cf. A082412, A103334.
%Y A103333 Cf. A000302, A004171. - _Vincenzo Librandi_, Jan 22 2009
%K A103333 easy,nonn
%O A103333 0,2
%A A103333 _Paul Barry_, Jan 31 2005