cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103340 Denominator of the unitary harmonic mean (i.e., the harmonic mean of the unitary divisors) of the positive integer n.

This page as a plain text file.
%I A103340 #28 Mar 18 2023 16:29:36
%S A103340 1,3,2,5,3,1,4,9,5,9,6,5,7,3,2,17,9,5,10,3,8,9,12,3,13,21,14,5,15,3,
%T A103340 16,33,4,27,12,25,19,15,14,27,21,2,22,15,1,9,24,17,25,39,6,35,27,7,18,
%U A103340 9,20,45,30,1,31,12,20,65,21,3,34,45,8,9,36,5,37,57,26,25,24,7,40,51,41,63
%N A103340 Denominator of the unitary harmonic mean (i.e., the harmonic mean of the unitary divisors) of the positive integer n.
%H A103340 Reinhard Zumkeller, <a href="/A103340/b103340.txt">Table of n, a(n) for n = 1..10000</a>
%F A103340 a(A006086(n)) = 1. - _Reinhard Zumkeller_, Mar 17 2012
%e A103340 1, 4/3, 3/2, 8/5, 5/3, 2, ...
%e A103340 a(8) = 9 because the unitary divisors of 8 are {1,8} and 2/(1/1 + 1/8) = 16/9.
%p A103340 with(numtheory): udivisors:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end: utau:=n->nops(udivisors(n)): usigma:=n->sum(udivisors(n)[j],j=1..nops(udivisors(n))): uH:=n->n*utau(n)/usigma(n):seq(denom(uH(n)),n=1..90);
%t A103340 ud[n_] := 2^PrimeNu[n]; usigma[n_] := DivisorSum[n, If[GCD[#, n/#] == 1, #, 0]&]; a[1] = 1; a[n_] := Denominator[n*ud[n]/usigma[n]]; Array[a, 100] (* _Jean-François Alcover_, Dec 03 2016 *)
%t A103340 a[n_] := Denominator[n * Times @@ (2 / (1 + Power @@@ FactorInteger[n]))]; a[1] = 1; Array[a, 100] (* _Amiram Eldar_, Mar 10 2023 *)
%o A103340 (Haskell)
%o A103340 import Data.Ratio ((%), denominator)
%o A103340 a103340 = denominator . uhm where uhm n = (n * a034444 n) % (a034448 n)
%o A103340 -- _Reinhard Zumkeller_, Mar 17 2012
%o A103340 (Python)
%o A103340 from sympy import gcd
%o A103340 from sympy.ntheory.factor_ import udivisor_sigma
%o A103340 def A103340(n): return (lambda x, y: x//gcd(x,y*n))(udivisor_sigma(n),udivisor_sigma(n,0)) # _Chai Wah Wu_, Oct 20 2021
%o A103340 (PARI)
%o A103340 a(n) = {my(f = factor(n)); denominator(n * prod(i=1, #f~, 2/(1 + f[i, 1]^f[i, 2]))); } \\ _Amiram Eldar_, Mar 10 2023
%Y A103340 Cf. A103339 (numerators), A099377, A099378.
%Y A103340 Cf. A034444, A034448, A077610.
%K A103340 frac,nonn
%O A103340 1,2
%A A103340 _Emeric Deutsch_, Jan 31 2005