This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103345 #33 May 10 2020 19:56:43 %S A103345 1,65,47449,3037465,47463376609,47464376609,5584183099672241, %T A103345 357389058474664049,260537105518334091721,52107472322919827957, %U A103345 92311616995117182948130877,92311647383100199924330877,445570781131605573859221176881493,445570839299219762020391212081493 %N A103345 Numerator of Sum_{k=1..n} 1/k^6 = Zeta(6,n). %C A103345 For the rationals Zeta(k,n) for k = 1..10 and n = 1..20, see the W. Lang link. %C A103345 a(n) gives the partial sum, Zeta(6,n), of Euler's (later Riemann's) Zeta(6). Zeta(k,n), k >= 2, is sometimes also called H(k,n) because for k = 1 these would be the harmonic numbers A001008/A002805. However, H(1,n) does not give partial sums of a convergent series. %H A103345 M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy]. %H A103345 Wolfdieter Lang, <a href="/A103345/a103345.pdf">Rational Zeta(k,n) and more</a>. %F A103345 a(n) = numerator(Sum_{k=1..n} 1/k^6) = numerator(A291456(n)/(n!)^6). %F A103345 G.f. for rationals Zeta(6, n): polylogarithm(6, x)/(1-x). %F A103345 Zeta(6, n) = (1/945)*Pi^6 - psi(5, n+1)/5!, see eq. 6.4.3 with m = 5, p. 260, of the Abramowitz-Stegun reference. - _Wolfdieter Lang_, Dec 03 2013 %e A103345 The first few fractions are 1, 65/64, 47449/46656, 3037465/2985984, 47463376609/46656000000, ... = A103345/A103346. - _Petros Hadjicostas_, May 10 2020 %t A103345 s=0; lst={}; Do[s+=n^1/n^7; AppendTo[lst,Numerator[s]],{n,3*4!}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 24 2009 *) %t A103345 Table[ HarmonicNumber[n, 6] // Numerator, {n, 1, 12}] (* _Jean-François Alcover_, Dec 04 2013 *) %Y A103345 Cf. A013664, A291456. For the denominators, see A103346. %Y A103345 For k=1..5, see: A001008/A002805, A007406/A007407, A007408/A007409, A007410/A007480, A099828/A069052. %K A103345 nonn,frac,easy %O A103345 1,2 %A A103345 _Wolfdieter Lang_, Feb 15 2005