This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103349 #16 Aug 11 2024 18:47:54 %S A103349 1,257,1686433,431733409,168646292872321,168646392872321, %T A103349 972213062238348973121,248886558707571775009601, %U A103349 1632944749460578249437992161,1632944765723715465050248417 %N A103349 Numerators of sum_{k=1..n} 1/k^8 = Zeta(8,n). %C A103349 a(n) gives the partial sums, Zeta(8,n) of Euler's Zeta(8). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) A001008/A002805. %C A103349 For the denominators see A103350 and for the rationals Zeta(8,n) see the W. Lang link under A103345. %F A103349 a(n)=numerator(sum_{k=1..n} 1/k^8). %F A103349 G.f. for rationals Zeta(8, n): polylogarithm(8, x)/(1-x). %t A103349 s=0;lst={};Do[s+=n^1/n^9;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 24 2009 *) %t A103349 Table[ HarmonicNumber[n, 8] // Numerator, {n, 1, 10}] (* _Jean-François Alcover_, Dec 04 2013 *) %t A103349 Accumulate[1/Range[10]^8]//Numerator (* _Harvey P. Dale_, Aug 11 2024 *) %Y A103349 For k=1..7 see: A001008/A002805, A007406/A007407, A007408/A007409, A007410/A007480, A099828/A069052, A103345/A103346, A103347/A103348. %K A103349 nonn,frac,easy %O A103349 1,2 %A A103349 _Wolfdieter Lang_, Feb 15 2005