cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103354 a(n) = floor(x), where x is the solution to x = 2^(n-x).

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 15, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 64, 65, 66, 67
Offset: 1

Views

Author

N. J. A. Sloane, Mar 21 2005

Keywords

Comments

Partial sums seem to be A006697(n-1) = A094913(n-1) + 1. - M. F. Hasler, Dec 14 2007 [Confirmed by Allouche and Shallit, 2016. - N. J. A. Sloane, Mar 24 2017]

Crossrefs

Cf. A006697 (partial sums), A094913.

Programs

  • Maple
    A[1]:= 1;
    for n from 2 to 100 do
      for x from A[n-1]  while x <= 2^(n-x) do od;
      A[n]:= x-1;
    od:
    seq(A[i],i=1..100); # Robert Israel, Dec 04 2016
  • Mathematica
    a[n_] := Floor[ FullSimplify[ ProductLog[ 2^n*Log[2]]/Log[2]]]; Table[a[n], {n, 1, 74}] (* Jean-François Alcover, Dec 13 2011, after M. F. Hasler *)
  • PARI
    A103354(n)=floor(solve(X=1,log(n)*2,X-2^(n-X))+1e-9) \\ M. F. Hasler, Dec 14 2007
    
  • PARI
    A103354(n)=floor(n-log(n)/log(2)*(1-1.5/n)) \\ M. F. Hasler, Dec 14 2007

Formula

a(n) is approximately n/(1+log_2(n)/n).
a(n) = floor(LambertW(log(2)*2^n)/log(2)) = floor(n - log_2(n) + log_2(n)/(n log(2)) + O((log(n)/n)^2)) = floor(n - log_2(n) + 1.5*log_2(n)/n) at least for all n < 10^7. - M. F. Hasler, Dec 14 2007

Extensions

Edited by M. F. Hasler, Dec 14 2007