This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103357 #10 Sep 19 2019 03:57:26 %S A103357 1,2,3,4,5,6,7,8,9,11,22,33,262,323,393,525,535,555,666,818,878,949, %T A103357 2002,3773,5775,6116,13031,19591,39093,41414,47374,59295,63236,81918, %U A103357 94549,95759,252252,394493,594495,662266,674476,686686,698896,764467 %N A103357 Numbers n such that n and pi(n) (A000720) are palindromic. %H A103357 Giovanni Resta, <a href="/A103357/b103357.txt">Table of n, a(n) for n = 1..196</a> (terms < 10^16) %F A103357 a(n) = P_A103358(n). %t A103357 NextPalindrome[n_] := Block[ {l = Floor[ Log[10, n] + 1], idn = IntegerDigits[n]}, If[ Union[ idn] == {9}, Return[n + 2], If[l < 2, Return[n + 1], If[ FromDigits[ Reverse[ Take[ idn, Ceiling[l/2]]]] FromDigits[ Take[ idn, -Ceiling[l/2]]], FromDigits[ Join[ Take[ idn, Ceiling[l/2]], Reverse[ Take[ idn, Floor[l/2]]] ]], idfhn = FromDigits[ Take[ idn, Ceiling[l/2]]] + 1; idp = FromDigits[ Join[ IntegerDigits[ idfhn], Drop[ Reverse[ IntegerDigits[ idfhn]], Mod[l, 2]]]] ]]]]; %t A103357 p = 0; a = {}; Do[p = NextPalindrome[ p]; q = IntegerDigits[ PrimePi[ p]]; If[ Reverse[q] == q, Print[{p, FromDigits[q]}]; AppendTo[a, p]], {n, 10^4}]; a (* _Robert G. Wilson v_, Feb 03 2005 *) %Y A103357 Corresponding palindromic pi(n) in A103358. %Y A103357 Cf. A046941, A046942, A103358, A103402, A103403. %K A103357 base,nonn %O A103357 1,2 %A A103357 _Zak Seidov_, Feb 02 2005 %E A103357 More terms from _Robert G. Wilson v_, Feb 03 2005