cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103365 First column of triangle A103364, which equals the matrix inverse of the Narayana triangle (A001263).

This page as a plain text file.
%I A103365 #18 Apr 01 2018 07:53:55
%S A103365 1,-1,2,-7,39,-321,3681,-56197,1102571,-27036487,810263398,
%T A103365 -29139230033,1238451463261,-61408179368043,3513348386222286,
%U A103365 -229724924077987509,17023649385410772579,-1419220037471837658603,132236541042728184852942,-13690229149108218523467549
%N A103365 First column of triangle A103364, which equals the matrix inverse of the Narayana triangle (A001263).
%H A103365 G. C. Greubel, <a href="/A103365/b103365.txt">Table of n, a(n) for n = 1..250</a>
%F A103365 From _Paul D. Hanna_, Jan 31 2009: (Start)
%F A103365 G.f.: A(x) = 1/B(x) where A(x) = Sum_{n>=0} (-1)^n*a(n)*x^n/[n!*(n+1)!/2^n] and B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n].
%F A103365 G.f. satisfies: A(x) = 1/F(x*A(x)) and F(x) = 1/A(x*F(x)) where F(x) = Sum_{n>=0} A155926(n)*x^n/[n!*(n+1)!/2^n].
%F A103365 G.f. satisfies: A(x) = 1/G(x/A(x)) and G(x) = 1/A(x/G(x)) where G(x) = Sum_{n>=0} A155927(n)*x^n/[n!*(n+1)!/2^n]. (End)
%F A103365 a(n) ~ (-1)^(n+1) * c * n! * (n-1)! * d^n, where d = 4/BesselJZero[1, 1]^2 = 0.2724429913055159309179376055957891881897555639652..., and c = 9.11336321311226744479181866135367355200240221549667284076... = BesselJZero[1, 1]^2 / (4*BesselJ[2, BesselJZero[1, 1]]). - _Vaclav Kotesovec_, Mar 01 2014, updated Apr 01 2018
%e A103365 From _Paul D. Hanna_, Jan 31 2009: (Start)
%e A103365 G.f.: A(x) = 1 - x + 2*x^2/3 - 7*x^3/18 + 39*x^4/180 - 321*x^5/2700 +...
%e A103365 G.f.: A(x) = 1/B(x) where:
%e A103365 B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
%t A103365 Table[(-1)^((n-1)/2) * (CoefficientList[Series[x/BesselJ[1,2*x],{x,0,40}],x])[[n]] * ((n+1)/2)! * ((n-1)/2)!,{n,1,41,2}] (* _Vaclav Kotesovec_, Mar 01 2014 *)
%o A103365 (PARI) a(n)=if(n<1,0,(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^-1)[n,1])
%o A103365 (PARI) {a(n)=local(B=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(1/B,n)*n!*(n+1)!/2^n} \\ _Paul D. Hanna_, Jan 31 2009
%Y A103365 Cf. A001263, A103364, A103366, A103367.
%Y A103365 Cf. A155926, A155927. [_Paul D. Hanna_, Jan 31 2009]
%Y A103365 Cf. A238390, A180874, A115369.
%K A103365 sign
%O A103365 1,3
%A A103365 _Paul D. Hanna_, Feb 02 2005