cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103370 Row sums of triangle A095801 (matrix square of the Narayana triangle A001263).

This page as a plain text file.
%I A103370 #43 Apr 06 2024 09:03:11
%S A103370 1,3,12,57,303,1743,10629,67791,448023,3047745,21235140,150969195,
%T A103370 1091936745,8016114681,59616180828,448459155063,3407842605039,
%U A103370 26131449100821,202011445055436,1573171285950639,12333030718989969
%N A103370 Row sums of triangle A095801 (matrix square of the Narayana triangle A001263).
%H A103370 Vincenzo Librandi, <a href="/A103370/b103370.txt">Table of n, a(n) for n = 1..200</a>
%H A103370 Jonathan M. Borwein, <a href="https://carmamaths.org/resources/jon/beauty.pdf">A short walk can be beautiful</a>, 2015.
%H A103370 J. M. Borwein, <a href="https://carmamaths.org/resources/jon/OEIStalk.pdf">Adventures with the OEIS: Five sequences Tony may like</a>, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016.
%H A103370 J. M. Borwein, <a href="/A060997/a060997.pdf">Adventures with the OEIS: Five sequences Tony may like</a>, Guttmann 70th [Birthday] Meeting, 2015, revised May 2016. [Cached copy, with permission]
%H A103370 Jonathan M. Borwein, Armin Straub and Christophe Vignat, <a href="http://carmamaths.org/resources/jon/dwalks.pdf">Densities of short uniform random walks, Part II: Higher dimensions</a>, Preprint, 2015.
%F A103370 G.f. satisfies: A(x) = B(x)^3 where A(x) = Sum_{n>=0} a(n)*x^n/[n!*(n+1)!/2^n] and B(x) = Sum_{n>=0} x^n/[n!*(n+1)!/2^n]. - _Paul D. Hanna_, Feb 01 2009
%F A103370 Recurrence: (n+1)*(n+2)*a(n) = 2*(5*n^2-2)*a(n-1) - 9*(n-2)*(n-1)*a(n-2). - _Vaclav Kotesovec_, Oct 17 2012
%F A103370 a(n) ~ 3^(2*n+5/2)/(4*Pi*n^3). - _Vaclav Kotesovec_, Oct 17 2012
%F A103370 G.f.: ((x-1)^2/(4*x*(1-9*x)^(2/3))*(-3*hypergeom([1/3, 1/3],[1],-27*x*(x-1)^2/(9*x-1)^2)+(3*x+1)^3*(9*x-1)^(-2)*hypergeom([4/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)))-1+1/(2*x). - _Mark van Hoeij_, May 14 2013
%F A103370 G.f.: -(x-1)^2*hypergeom([1/3, 4/3],[2],-27*x*(x-1)^2/(9*x-1)^2)/(2*x*(1-9*x)^(2/3))-1+1/(2*x). - _Mark van Hoeij_, Nov 12 2023
%e A103370 From _Paul D. Hanna_, Feb 01 2009: (Start)
%e A103370 G.f.: A(x) = 1 + 3*x + 12*x^2/3 + 57*x^3/18 + 303*x^4/180 + 1743*x^5/2700 +...+ a(n)*x^n/[n!*(n+1)!/2^n] +...
%e A103370 A(x) = B(x)^3 where:
%e A103370 B(x) = 1 + x + x^2/3 + x^3/18 + x^4/180 + x^5/2700 +...+ x^n/[n!*(n+1)!/2^n] +... (End)
%t A103370 RecurrenceTable[{(n + 1) * (n + 2) * a[n] == 2 * (5 * n^2 - 2) * a[n - 1] - 9 * (n - 2) * (n - 1) * a[n - 2], a[1] == 1, a[2] == 3}, a, {n, 21}] (* _Vaclav Kotesovec_, Oct 17 2012 *)
%o A103370 (PARI) {a(n)=if(n<1,0,sum(k=1,n,(matrix(n,n,m,j,binomial(m-1,j-1)*binomial(m,j-1)/j)^2)[n,k]))}
%o A103370 (PARI) {a(n)=local(B=sum(k=0,n,x^k/(k!*(k+1)!/2^k))+x*O(x^n));polcoeff(B^3,n)*n!*(n+1)!/2^n} \\ _Paul D. Hanna_, Feb 01 2009
%Y A103370 Cf. A000108, A001263, A008277, A095801.
%K A103370 nonn
%O A103370 1,2
%A A103370 _Paul D. Hanna_, Feb 02 2005