A103432 Subsequence of the Gaussian primes, where only Gaussian primes a+bi with a>0, b>=0 are listed. Ordered by the norm N(a+bi)=a^2+b^2 and the size of the real part when the norms are equal. The sequence gives the imaginary parts. See A103431 for the real parts.
1, 2, 1, 0, 3, 2, 4, 1, 5, 2, 6, 1, 5, 4, 0, 7, 2, 6, 5, 8, 3, 8, 5, 9, 4, 10, 1, 10, 3, 8, 7, 0, 11, 4, 10, 7, 11, 6, 13, 2, 10, 9, 12, 7, 14, 1, 15, 2, 13, 8, 15, 4, 16, 1, 13, 10, 14, 9, 16, 5, 17, 2, 13, 12, 14, 11, 16, 9, 18, 5, 17, 8, 0, 18, 7, 17, 10, 19, 6, 20, 1, 20, 3, 15, 14, 17
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Sven Simon, List with Gaussian primes of A103431/A103432
Programs
-
Maple
N:= 100: # to get all terms with norm <= N p1:= select(isprime,[seq(i,i=3..N,4)]): p2:= select(isprime,[seq(i,i=1..N^2,4)]): p2:= map(t -> GaussInt:-GIfactors(t)[2][1][1],p2): p3:= sort( [1+I, op(p1),op(p2)],(a,b) -> Re(a)^2 + Im(a)^2 < Re(b)^2 + Im(b)^2): h:= proc(z) local a,b; a:= Re(z); b:= Im(z); if b = 0 then 0 else a:= abs(a); b:= abs(b); if a = b then a elif a < b then b,a else a,b fi fi end proc: map(h,p3); # Robert Israel, Feb 23 2016
-
Mathematica
maxNorm = 500; norm[z_] := Re[z]^2 + Im[z]^2; m = Sqrt[maxNorm] // Ceiling; gp = Select[Table[a + b I, {a, 1, m}, {b, 0, m}] // Flatten, norm[#] <= maxNorm && PrimeQ[#, GaussianIntegers -> True]&]; SortBy[gp, norm[#] maxNorm + Abs[Re[#]]&] // Im (* Jean-François Alcover, Feb 26 2019 *)
Extensions
Definition of norm corrected by Franklin T. Adams-Watters, Mar 04 2011
a(48) corrected by Robert Israel, Feb 23 2016
Comments