cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103437 Sum_{i>=1} (i^n*Lucas(i)/2^i).

This page as a plain text file.
%I A103437 #10 Jan 24 2017 19:37:14
%S A103437 4,22,210,2974,56130,1324222,37489410,1238235454,46740118530,
%T A103437 1984855550782,93653819396610,4860878501987134,275227990564092930,
%U A103437 16882335978752910142,1115211301788480951810,78930528072274523870014
%N A103437 Sum_{i>=1} (i^n*Lucas(i)/2^i).
%H A103437 Robert Israel, <a href="/A103437/b103437.txt">Table of n, a(n) for n = 0..356</a>
%F A103437 From _Robert Israel_, Jan 24 2017: (Start)
%F A103437 a(n) = polylog(-n, (sqrt(5)+1)/4) + polylog(-n, (-sqrt(5)+1)/4).
%F A103437 E.g.f.: 2*exp(x)*(exp(x)+1)/(4-2*exp(x)-exp(2*x)). (End)
%F A103437 a(n) ~ n! / (log(sqrt(5)-1))^(n+1). - _Vaclav Kotesovec_, Jan 24 2017
%p A103437 V:=2*exp(x)*(exp(x)+1)/(4-2*exp(x)-exp(2*x)):
%p A103437 S:= series(V,x,51):
%p A103437 seq(coeff(S,x,j)*j!,j=0..50); # _Robert Israel_, Jan 24 2017
%Y A103437 Cf. A000032.
%K A103437 nonn
%O A103437 0,1
%A A103437 _Ralf Stephan_, Feb 08 2005