cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103441 Triangle read by rows: T(n,k) = number of bracelets of n beads (necklaces that can be flipped over) with exactly two colors and k white beads for which the set of distances among the white beads are different.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 3, 3, 1, 1, 3, 4, 4, 3, 1, 1, 4, 5, 7, 5, 4, 1, 1, 4, 7, 10, 10, 7, 4, 1, 1, 5, 8, 16, 13, 16, 8, 5, 1, 1, 5, 10, 20, 26, 26, 20, 10, 5, 1, 1, 6, 12, 28, 35, 35, 35, 28, 12, 6, 1, 1, 6, 14, 34, 57, 74, 74, 57, 34, 14, 6, 1, 1, 7, 16, 47, 73, 120, 85, 120, 73
Offset: 2

Views

Author

Wouter Meeussen, Feb 06 2005

Keywords

Comments

If two bracelets can be made to coincide by rotation or flipping over they necessarily have the same set of distances, but the reverse is obviously not true.
Offset is 2, since exactly two colors are required, ergo at least two beads.
T[2n,n] equals A045611. Row sums equal A103442.
Same as A052307, except for bracelets such as {0,0,0,1,1,0,1,1} and{0,0,1,0,0,1,1,1}, that both have the same set of distances between the "1" beads: 4 d[0]+ 4 d[1]+ 2 d[2]+ 4 d[3]+ 2 d[4], where d[k] represents the unidirectional distance between two beads k places apart.

Examples

			Table starts as
  1;
  1,1;
  1,2,1;
  1,2,2,1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Needs[DiscreteMath`NewCombinatorica`]; f[bi_]:=DeleteCases[bi Range[Length[bi]], 0]; dist[li_, l_]:=Plus@@Flatten[Outer[d[Min[ #, l-# ]&@Mod[Abs[ #1-#2], l, 0]]&, li, li]]; Table[Length[Union[(dist[f[ #1], n]&)/@ListNecklaces[n, Join[1+0*Range[i], 0*Range[n-i]], Dihedral]]], {n, 2, 16}, {i, 1, n-1}]