cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103446 Unlabeled analog of A025168.

This page as a plain text file.
%I A103446 #43 Jun 03 2017 04:52:50
%S A103446 0,1,3,8,21,54,137,344,856,2113,5179,12614,30548,73595,176455,421215,
%T A103446 1001388,2371678,5597245,13166069,30873728,72185937,168313391,
%U A103446 391428622,908058205,2101629502,4853215947,11183551059,25718677187,59030344851,135237134812
%N A103446 Unlabeled analog of A025168.
%C A103446 Or, if the initial 0 is omitted, this is the binomial transform of the partition numbers p(1), p(2), ... = 1, 2, 3, 5, 7, 11, 15, 22, 30, ... (A000041 without the initial 1).
%C A103446 The most precise definition of this sequence is the Maple combstruct command given below. See the first Wieder link for further details.
%C A103446 Sequence appears to have a rational o.g.f. - _Ralf Stephan_, May 18 2007
%C A103446 For n>0, row sums of triangle A137151. - _Gary W. Adamson_, Jan 23 2008
%C A103446 a(n) = A218482(n) for n>=1; see A218482 for more formulas.
%H A103446 N. J. A. Sloane and Thomas Wieder, <a href="http://arXiv.org/abs/math.CO/0307064">The Number of Hierarchical Orderings</a>, Order 21 (2004), 83-89.
%H A103446 Thomas Wieder, <a href="/A103446/a103446_1.txt">Expanded definitions of A103446 and A025168</a>
%F A103446 O.g.f.: exp( Sum_{n>=1} sigma(n)*x^n/(1-x)^n/n ) - 1. - _Paul D. Hanna_, Apr 21 2010
%F A103446 O.g.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k)*sigma(k) ) - 1. - _Paul D. Hanna_, Feb 04 2012
%F A103446 O.g.f. P(x/(1-x)), where P(x) is the o.g.f. for number of partitions (A000041) a(n)=sum_{k=1,n} ( binomial(n-1,k-1)*A000041(k)). - _Vladimir Kruchinin_, Aug 10 2010
%F A103446 a(n) ~ exp(Pi*sqrt(n/3) + Pi^2/24) * 2^(n-2) / (n*sqrt(3)). - _Vaclav Kotesovec_, Jun 25 2015
%e A103446 Let {} denote a set, [] a list and Z an unlabeled element.
%e A103446 a(3) = 8 because we have {[[Z]],[[Z]],[[Z]]}, {[[Z],[Z]],[[Z]]}, {[[Z],[Z],[Z]]}, {[[Z],[Z,Z]]}, {[[Z,Z],[Z]]}, {[[Z,Z]],[[Z]]}, {[[Z]],[[Z,Z]]}, {[[Z,Z,Z]]}.
%p A103446 with(combstruct); SubSetSeqU := [T,{T=Subst(U,S),S=Set(U,card>=1),U=Sequence(Z,card>=1)},unlabeled]; [seq(count(SubSetSeqU, size=n), n=0..30)];
%p A103446 allstructs(SubSetSeq,size=3); # to get the structures for n=3 - this output is shown in the example lines.
%t A103446 Flatten[{0, Table[Sum[Binomial[n-1,k]*PartitionsP[k+1],{k,0,n-1}],{n,1,30}]}] (* _Vaclav Kotesovec_, Jun 25 2015 *)
%o A103446 (PARI) {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,sigma(m)*x^m/(1-x+x*O(x^n))^m/m)),n))} \\ _Paul D. Hanna_, Apr 21 2010
%o A103446 (PARI) {a(n)=if(n<1,0,polcoeff(exp(sum(m=1,n,x^m/m*sum(k=1,m,binomial(m,k)*sigma(k)))+x*O(x^n)),n))} \\ _Paul D. Hanna_, Feb 04 2012
%o A103446 (PARI) Vec(1/eta('x/(1-'x)+O('x^66))) \\ _Joerg Arndt_, Jul 30 2011
%Y A103446 Cf. A025168, A034691, A050351, A137151, A185003 (log), A218482.
%K A103446 nonn
%O A103446 0,3
%A A103446 _Thomas Wieder_, Feb 06 2005; revised Feb 20 2006
%E A103446 I can confirm that the terms shown are the binomial transform of the partition sequence 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, ... (A000041 without the a(0) term). - _N. J. A. Sloane_, May 18 2007