This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103532 #66 Aug 15 2025 10:38:16 %S A103532 1,20,81,208,425,756,1225,1856,2673,3700,4961,6480,8281,10388,12825, %T A103532 15616,18785,22356,26353,30800,35721,41140,47081,53568,60625,68276, %U A103532 76545,85456,95033,105300,116281,128000,140481,153748,167825,182736 %N A103532 Number of divisors of 240^n. %C A103532 Geometric interpretation: Take a simple cubical grid of size (2n+1). Number the coordinates along each axis from 1 to (2n+1). Select only the cells that have at least two odd coordinates, and discard the rest. The number of selected cells is a(n). - _Arun Giridhar_, Mar 27 2015 %H A103532 Kelvin Voskuijl, <a href="/A103532/b103532.txt">Table of n, a(n) for n = 0..10000</a> %H A103532 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1). %F A103532 From _R. J. Mathar_ and _Stefan Steinerberger_, Aug 31 2008: (Start) %F A103532 a(n) = (4*n+1)*(n+1)^2. %F A103532 G.f.: (1+16x+7x^2)/(1-x)^4. %F A103532 Inverse binomial transform: 1, 19, 42, 24, 0 (0 continued). (End) %F A103532 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3. - _Harvey P. Dale_, Jan 21 2013 %F A103532 a(n) = (n+1)*A001107(n+1), where A001107 are the partial sums of A017007. - _J. M. Bergot_, Jul 08 2013 %F A103532 a(n) = Sum_{i=0..n} (n+1)*(8*i+1). [_Bruno Berselli_, Sep 08 2015] %F A103532 Sum_{n>=0} 1/a(n) = 2*Pi/9 - Pi^2/18 + 4*log(2)/3 = 1.07401658592825... . - _Vaclav Kotesovec_, Oct 04 2016 %F A103532 E.g.f.: exp(x)*(1 + 19*x + 21*x^2 + 4*x^3). - _Stefano Spezia_, Jan 31 2025 %F A103532 Sum_{n>=0} (-1)^n/a(n) = 2*sqrt(2)*Pi/9 - Pi^2/36 - (4/9)*(log(2) + sqrt(2)*log(sqrt(2)-1)). - _Amiram Eldar_, Aug 15 2025 %e A103532 a(2) = 81 because 240^2 has 81 divisors. %e A103532 a(2) = 81 because a 5 X 5 X 5 grid has 81 cells with at least two odd coordinates each, coordinate numbering starting at 1. %p A103532 A103532 := proc(n) (4*n+1)*(n+1)^2 ; end proc: # _R. J. Mathar_, Aug 31 2008 %t A103532 Table[(4 n + 1) (n + 1)^2, {n, 0, 40}] (* _Stefan Steinerberger_, Aug 31 2008 *) %t A103532 DivisorSigma[0,240^Range[0,40]] (* or *) LinearRecurrence[{4,-6,4,-1},{1,20,81,208},40] (* _Harvey P. Dale_, Jan 21 2013 *) %o A103532 (Magma) [(4*n+1)*(n+1)^2: n in [0..45]]; // _Vincenzo Librandi_, Feb 10 2016 %Y A103532 Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000. %K A103532 nonn,easy %O A103532 0,2 %A A103532 _J. Lowell_, Aug 30 2008 %E A103532 More terms from _Stefan Steinerberger_ and _R. J. Mathar_, Aug 31 2008 %E A103532 Example corrected by _Harvey P. Dale_, Jan 21 2013