This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103579 #65 Sep 01 2024 03:56:23 %S A103579 2,5,29,41,53,89,113,173,233,281,293,509,593,641,653,761,809,953,1013, %T A103579 1049,1229,1289,1409,1481,1601,1733,1889,1901,1973,2069,2129,2141, %U A103579 2273,2393,2549,2693,2741,2753,2969,3329,3389,3413,3449,3593,3761,3821,4073,4349,4373,4409,4481,4733,4793,5081 %N A103579 Sophie Germain primes that are not Lucasian primes: primes p not 3 (mod 4) such that 2p + 1 is prime. %C A103579 For n > 1, the prime 2*a(n) + 1 is the smallest prime divisor of (2^a(n) + 1)/3. - _Emmanuel Vantieghem_, Aug 12 2018 %C A103579 Primes p such that 2*p+1 divides 2^p+1. - _Hilko Koning_, Sep 21 2021 %C A103579 Subset of Josephus_2 primes {A163782} that are themselves also prime. - _Joe Nellis_, Dec 27 2022 %H A103579 Harvey P. Dale, <a href="/A103579/b103579.txt">Table of n, a(n) for n = 1..1000</a> %H A103579 Luis Henri Gallardo, <a href="http://www.math.nthu.edu.tw/~amen/2023/AMEN-220120.pdf">Bell Numbers Modulo p</a>, Appl. Math. E-Notes (2023) Vol. 23, 40-48. See p. 43. %p A103579 select(t -> isprime(t) and isprime(2*t+1),[2,seq(4*k+1,k=1..10000)]); # _Robert Israel_, May 20 2015 %t A103579 Select[Prime[Range[500]], PrimeQ[2#+ 1 ] && Mod[#, 4] != 3 &] (* _Harvey P. Dale_, Jun 15 2013 *) %t A103579 Select[4Range[100] + 1, PrimeQ[#] && PrimeQ[2# + 1] &] (* _Alonso del Arte_, Jun 01 2019 *) %o A103579 (PARI) forprime(p=2,10^4,if((p%4!=3)&&isprime(2*p+1),print1(p,", "))); \\ _Joerg Arndt_, Nov 18 2014 %Y A103579 Cf. A002144, A002515, A005384, A163782. %K A103579 easy,nonn %O A103579 1,1 %A A103579 _Jonathan Vos Post_, Mar 23 2005 %E A103579 More terms from _Vladimir Joseph Stephan Orlovsky_, Jul 07 2009