This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103580 #30 Sep 10 2022 01:50:01 %S A103580 1,2,4,6,11,15,26,36,57,79,130,170,276,379,579,784,1249,1654,2615, %T A103580 3515,5343,7256,11352,14930,23203,31378,47510,63777,98680,130502, %U A103580 201356,270037,407428,548089,840170,1110428,1701871,2284324,3440336,4601655 %N A103580 Number of nonempty subsets S of {1,2,3,...,n} that have the property that no element x of S is a nonnegative integer linear combination of elements of S-{x}. %H A103580 Fausto A. C. Cariboni, <a href="/A103580/b103580.txt">Table of n, a(n) for n = 1..100</a> %H A103580 Sergey Kitaev, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Kitaev/kitaev45.html">Independent Sets on Path-Schemes</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.2. %H A103580 Sean Li, <a href="https://arxiv.org/abs/2208.14587">Counting numerical semigroups by Frobenius number, multiplicity, and depth</a>, arXiv:2208.14587 [math.CO], 2022. %F A103580 a(n) = A326083(n) - 1. - _Gus Wiseman_, Jun 07 2019 %e A103580 a(4) = 6 because the only permissible subsets are {1}, {2}, {3}, {4}, {2,3}, {3,4}. %e A103580 From _Gus Wiseman_, Jun 07 2019: (Start) %e A103580 The a(1) = 1 through a(6) = 15 nonempty subsets of {1..n} containing none of their own non-singleton nonzero nonnegative linear combinations are: %e A103580 {1} {1} {1} {1} {1} {1} %e A103580 {2} {2} {2} {2} {2} %e A103580 {3} {3} {3} {3} %e A103580 {2,3} {4} {4} {4} %e A103580 {2,3} {5} {5} %e A103580 {3,4} {2,3} {6} %e A103580 {2,5} {2,3} %e A103580 {3,4} {2,5} %e A103580 {3,5} {3,4} %e A103580 {4,5} {3,5} %e A103580 {3,4,5} {4,5} %e A103580 {4,6} %e A103580 {5,6} %e A103580 {3,4,5} %e A103580 {4,5,6} %e A103580 a(n) is also the number of nonempty subsets of {1..n} containing all of their own nonzero nonnegative linear combinations <= n. For example the a(1) = 1 through a(6) = 15 subsets are: %e A103580 {1} {2} {2} {3} {3} {4} %e A103580 {1,2} {3} {4} {4} {5} %e A103580 {2,3} {2,4} {5} {6} %e A103580 {1,2,3} {3,4} {2,4} {3,6} %e A103580 {2,3,4} {3,4} {4,5} %e A103580 {1,2,3,4} {3,5} {4,6} %e A103580 {4,5} {5,6} %e A103580 {2,4,5} {2,4,6} %e A103580 {3,4,5} {3,4,6} %e A103580 {2,3,4,5} {3,5,6} %e A103580 {1,2,3,4,5} {4,5,6} %e A103580 {2,4,5,6} %e A103580 {3,4,5,6} %e A103580 {2,3,4,5,6} %e A103580 {1,2,3,4,5,6} %e A103580 (End) %t A103580 Table[Length[Select[Subsets[Range[n],{1,n}],SubsetQ[#,Select[Plus@@@Tuples[#,2],#<=n&]]&]],{n,10}] (* _Gus Wiseman_, Jun 07 2019 *) %Y A103580 Cf. A007865, A050291, A051026, A085489, A139384, A151897, A308546. %Y A103580 Cf. A326020, A326076, A326080, A326083, A326114. %K A103580 nonn %O A103580 1,2 %A A103580 _Jeffrey Shallit_, Mar 23 2005 %E A103580 More terms from _David Wasserman_, Apr 16 2008