This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103583 #17 May 08 2020 06:08:18 %S A103583 1,1,0,1,1,1,1,1,0,0,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,0, %T A103583 0,0,1,1,1,1,1,1,0,0,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A103583 1,1,1,1,1,1,0,1,0,0,1,1,1,1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1,1,1,1 %N A103583 Same as A103582, but read antidiagonals in upward direction. %C A103583 Successive digits of A103581. %H A103583 David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [<a href="http://neilsloane.com/doc/slopey.pdf">pdf</a>, <a href="http://neilsloane.com/doc/slopey.ps">ps</a>]. %H A103583 David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL8/Sloane/sloane300.html">Sloping binary numbers: a new sequence related to the binary numbers</a>, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp. %t A103583 t = Table[ Take[ Flatten[ Table[ Join[ Table[1, {i, n}], Table[0, {i, n}]], {10}]], 15], {n, 15}]; Flatten[ Table[ t[[n - i + 1, i]], {n, 14}, {i, n}]] (* _Robert G. Wilson v_, Mar 24 2005 *) %Y A103583 Cf. A103582, A103581, A103588, A103589. %K A103583 nonn,easy,tabl %O A103583 0,1 %A A103583 _Philippe Deléham_, Mar 24 2005 %E A103583 Rechecked by _David Applegate_, Apr 19 2005