This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103608 #28 May 16 2019 04:54:33 %S A103608 3677,16447,118463,357131,368153,582017,932413,1239443,2284027, %T A103608 2421473,3900931,4943777,6850463,6966059,10448783,11548777,12849937, %U A103608 15198811,16031237,17315087,19443679,20075687,20614667,20850223,21392099,22586903,22634153,23013773,24753761 %N A103608 Prime centuries with exactly one prime year in each decade. %C A103608 Or: Primes p such that there is exactly one prime in each decade [10d-9, 10d] for 10p-9 <= d < 10p. - _M. F. Hasler_, May 02 2019 %e A103608 4073 is not in the sequence because 407203 and 407207 are both prime and in the same decade. 211217 is not in the sequence because 21121691 and 21121697 are both prime and in the same decade. 5046053 is not in the sequence because 504605291 and 504605293 are both prime and in the same decade. - _R. J. Mathar_, May 02 2019 %p A103608 isA103608 := proc(n) %p A103608 local p,dec ; %p A103608 if not isprime(n) then %p A103608 false; %p A103608 else %p A103608 p := 100*(n-1) ; %p A103608 for dec from 0 to 9 do %p A103608 p := nextprime(p) ; %p A103608 if modp(floor(p/10),10) <> dec then %p A103608 return false; %p A103608 end if; %p A103608 end do: %p A103608 p := nextprime(p) ; %p A103608 if p > 100*n then %p A103608 true ; %p A103608 else %p A103608 false; %p A103608 end if; %p A103608 end if; %p A103608 end proc: %p A103608 for i from 1 do %p A103608 p := ithprime(i) ; %p A103608 if isA103608(p) then %p A103608 printf("%d,\n",p) ; %p A103608 end if; %p A103608 end do: # _R. J. Mathar_, May 02 2019 %o A103608 (PARI) select( is_A103608(p)={for(k=10*p-9,10*p,#primes([10*k-9,10*k])==1||return);isprime(p)}, primes(10^5)) \\ _M. F. Hasler_, May 02 2019 %Y A103608 Cf. A156115, A307890 (allowing more than one prime in first and last decade). %K A103608 nonn,less %O A103608 1,1 %A A103608 _R. J. Mathar_, _M. Hasler_, May 02 2019