cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103621 Trajectory of 7 under repeated application of the map n -> A102370(n).

Original entry on oeis.org

7, 9, 11, 13, 23, 25, 27, 61, 71, 73, 75, 77, 87, 89, 91, 125, 135, 137, 139, 141, 151, 153, 155, 189, 199, 201, 203, 205, 215, 217, 219, 253, 263, 265, 267, 269, 279, 281, 283, 317, 327, 329, 331, 333, 343, 345, 347, 381, 391, 393, 395, 397, 407, 409, 411, 445
Offset: 1

Views

Author

Philippe Deléham, Mar 31 2005

Keywords

Comments

Initially, first differences are 8-periodic: 2,2,2,10,2,2,34,10. [Unsigned comment made accurate by Peter Munn, Jan 13 2024]

Crossrefs

Cf. A102370.
Trajectories of other numbers A103192 (1), A103747 (2), A158953 (12), A159887 (29).

Programs

  • Mathematica
    f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[ Log[2, n + 1] + 2]]}, While[k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s + n]; NestList[f, 7, 55] (* Robert G. Wilson v, Mar 30 2005 *)

Formula

Conjectures from Chai Wah Wu, Feb 01 2018: (Start)
a(n) = a(n-1) + a(n-8) - a(n-9) for n > 9.
G.f.: x*(3*x^8 + 34*x^7 + 2*x^6 + 2*x^5 + 10*x^4 + 2*x^3 + 2*x^2 + 2*x + 7)/(x^9 - x^8 - x + 1). (End)
The above conjectures are incompatible with A102370(2^37-37) = 2^38-3. - Peter Munn, Jan 13 2024

Extensions

More terms from Robert G. Wilson v, Mar 30 2005