A103633 Triangle read by rows: triangle of repeated stepped binomial coefficients.
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 0, 1, 6, 15
Offset: 0
Examples
Triangle begins: 1; 0, 1; 0, 1, 1; 0, 0, 1, 1; 0, 0, 1, 2, 1; 0, 0, 0, 1, 2, 1; 0, 0, 0, 1, 3, 3, 1; 0, 0, 0, 0, 1, 3, 3, 1; 0, 0, 0, 0, 1, 4, 6, 4, 1; 0, 0, 0, 0, 0, 1, 4, 6, 4, 1; 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1; 0, 0, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1; 0, 0, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1; ...
Formula
Number triangle T(n, k) = binomial(floor(n/2), n-k).
Sum_{n>=0} T(n, k) = A000045(k+2) = Fibonacci(k+2). - Philippe Deléham, Oct 08 2005
Sum_{k=0..n} T(n,k) = 2^floor(n/2) = A016116(n). - Philippe Deléham, Dec 03 2006
G.f.: (1+x*y)/(1-x^2*y-x^2*y^2). - Philippe Deléham, Nov 10 2013
T(n,k) = T(n-2,k-1) + T(n-2,k-2) for n > 2, T(0,0) = T(,1) = T(2,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Nov 10 2013
Comments