cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103635 Positions of running maxima of log(g(n))/sqrt(n*log(n)), where g(n) is Landau's function A000793.

This page as a plain text file.
%I A103635 #30 Feb 16 2025 08:32:56
%S A103635 2,3,5,7,9,10,12,17,19,30,36,40,43,47,49,53,60,64,66,70,83,85,89,108,
%T A103635 112,141,172,209,250,258,293,301,321,340,348,360,368,401,413,421,480,
%U A103635 533,541,608,626,679,697,752,770,831,849,914,932,1021,1118,1160,1219
%N A103635 Positions of running maxima of log(g(n))/sqrt(n*log(n)), where g(n) is Landau's function A000793.
%C A103635 Massias proved that the function log(g(n))/sqrt(n*log(n)) reaches its maximum at n = 1319766. Therefore this sequence is finite, with a(378) = 1319766 being the last term. - _Amiram Eldar_, Aug 23 2019
%H A103635 Amiram Eldar, <a href="/A103635/b103635.txt">Table of n, a(n) for n = 2..378</a> (calculated using the MAPLE code by Deléglise et al.; terms 2..123 from Alois P. Heinz)
%H A103635 Marc Deléglise, Jean-Louis Nicolas, and Paul Zimmermann, <a href="http://archive.numdam.org/item/JTNB_2008__20_3_625_0/">Landau's function for one million billions</a>, Journal de Théorie des Nombres de Bordeaux, Vol. 20, No. 3 (2008), pp. 625-671.
%H A103635 Marc Deléglise, Jean-Louis Nicolas, and Paul Zimmermann, <a href="http://math.univ-lyon1.fr/homes-www/nicolas/landaug.html">Computation of the Landau function g(n)</a> (MAPLE code).
%H A103635 Jean-Pierre Massias, <a href="https://eudml.org/doc/73167">Majoration explicite de l'ordre maximum d'un élément du groupe symétrique</a>, Annales de la Faculté des sciences de Toulouse: Mathématiques, Vol. 6, No. 3-4 (1984), pp. 269-281.
%H A103635 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LandausFunction.html">Landau's Function</a>
%e A103635 From _Jon E. Schoenfield_, Aug 16 2015: (Start)
%e A103635 Terms are the values of n at which record high values of the ratio log(g(n))/sqrt(n*log(n)) occur (where g(n) = A000793(n)):
%e A103635         n  g(n)  log(g(n))/sqrt(n*log(n))
%e A103635        ==  ====  ========================
%e A103635         1     1        (undefined)
%e A103635 a(1) =  2     2          0.588705 <--- record high
%e A103635 a(2) =  3     3          0.605148 <--- record high
%e A103635         4     4          0.588705
%e A103635 a(3) =  5     6          0.631623 <--- record high
%e A103635         6     6          0.546467
%e A103635 a(4) =  7    12          0.673286 <--- record high
%e A103635         8    15          0.663955
%e A103635 a(5) =  9    20          0.673666 <--- record high
%e A103635 a(6) = 10    30          0.708800 <--- record high
%e A103635 (End)
%t A103635 g[n_] := Max@Apply[LCM, IntegerPartitions@n, 1]; f[n_] := Log[g[n]]/Sqrt[n * Log[n]]; fm = 0; s = {}; Do[f1 = f[n]; If[f1 > fm, fm = f1; AppendTo[s, n]], {n, 2, 100}]; s (* _Amiram Eldar_, Aug 23 2019 after _Robert G. Wilson v_ at A000793 *)
%Y A103635 Cf. A000793.
%K A103635 nonn,fini,full
%O A103635 2,1
%A A103635 _Eric W. Weisstein_, Feb 11 2005
%E A103635 More terms from _R. J. Mathar_, Feb 14 2008
%E A103635 More terms from _Alois P. Heinz_, Feb 18 2013