cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103647 Decimal expansion of area of the largest rectangle under the normal curve.

This page as a plain text file.
%I A103647 #29 Feb 16 2025 08:32:56
%S A103647 4,8,3,9,4,1,4,4,9,0,3,8,2,8,6,6,9,9,5,9,5,6,6,0,3,8,5,8,7,1,1,2,1,3,
%T A103647 0,9,6,5,7,3,4,3,9,4,1,4,7,4,8,7,0,0,5,0,9,7,5,1,1,0,1,6,8,5,6,2,2,0,
%U A103647 0,1,2,7,1,4,0,1,6,6,5,8,9,0,1,6,6,2,2,5,8,9,3,8,7,8,8,4,8,0,9,4,5,8,2,7,4
%N A103647 Decimal expansion of area of the largest rectangle under the normal curve.
%C A103647 The normal curve is 'nc' = 1/(sqrt(2*Pi))*e^(-1/2*x^2). Area = 2*x*nc. d(Area)/dx = (sqrt(2/Pi) - sqrt(2/Pi)*x^2)*e^(-1/2*x^2). Maximum at x = 1.
%C A103647 Occurs in a formula estimating the error in approximating a binomial distribution with a Poisson distribution. See [Prohorov]. - _Eric M. Schmidt_, Feb 26 2014
%D A103647 R. E. Larson, R. P. Hostetler & B. H. Edwards, Calculus of a Single Variable, 5th Edition, D. C. Heath and Co., Lexington, MA Section 5.4 Exponential Functions: Differentiation and Integration, Exercise 61, page 351.
%D A103647 Yu. V. Prohorov, Asymptotic behavior of the binomial distribution. 1961. Select. Transl. Math. Statist. and Probability, Vol. 1 pp. 87-95. Inst. Math. Statist. and Amer. Math. Soc., Providence, R.I.
%H A103647 Yu. V. Prohorov, <a href="http://mi.mathnet.ru/eng/umn8214">Asymptotic behavior of the binomial distribution</a>, Uspekhi Mat. Nauk, 8:3(55) (1953), 135-142 (in Russian). See lambda1 in theorem 2 p. 137.
%H A103647 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NormalDistribution.html">Normal Distribution</a>.
%F A103647 Equals sqrt(2/Pi)*e^(-1/2).
%e A103647 0.48394144903828669959566038587112130965734394147487005097511016856...
%t A103647 RealDigits[ Sqrt[2/(E*Pi)], 10, 111][[1]]
%Y A103647 Cf. A001113, A092605.
%K A103647 cons,nonn
%O A103647 0,1
%A A103647 _Robert G. Wilson v_, Feb 18 2005