cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103710 Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its semi latus rectum: sqrt(2) + log(1 + sqrt(2)).

This page as a plain text file.
%I A103710 #101 Mar 08 2025 19:48:02
%S A103710 2,2,9,5,5,8,7,1,4,9,3,9,2,6,3,8,0,7,4,0,3,4,2,9,8,0,4,9,1,8,9,4,9,0,
%T A103710 3,8,7,5,9,7,8,3,2,2,0,3,6,3,8,5,8,3,4,8,3,9,2,9,9,7,5,3,4,6,6,4,4,1,
%U A103710 0,9,6,6,2,6,8,4,1,3,3,1,2,6,6,8,4,0,9,4,4,2,6,2,3,7,8,9,7,6,1,5,5,9,1,7,5
%N A103710 Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its semi latus rectum: sqrt(2) + log(1 + sqrt(2)).
%C A103710 The universal parabolic constant, equal to the ratio of the latus rectum arc of any parabola to its focal parameter. Like Pi, it is transcendental.
%C A103710 Just as all circles are similar, all parabolas are similar. Just as the ratio of a semicircle to its radius is always Pi, the ratio of the latus rectum arc of any parabola to its semi latus rectum is sqrt(2) + log(1 + sqrt(2)).
%C A103710 Note the remarkable similarity to sqrt(2) - log(1 + sqrt(2)), the universal equilateral hyperbolic constant A222362, which is a ratio of areas rather than of arc lengths. Lockhart (2012) says "the arc length integral for the parabola .. is intimately connected to the hyperbolic area integral ... I think it is surprising and wonderful that the length of one conic section is related to the area of another."
%C A103710 Is it a coincidence that the universal parabolic constant is equal to 6 times the expected distance A103712 from a randomly selected point in the unit square to its center? (Reese, 2004; Finch, 2012)
%D A103710 H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
%D A103710 P. Lockhart, Measurement, Harvard University Press, 2012, p. 369.
%D A103710 C. E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, pp. 286-288.
%D A103710 C. S. Ogilvy, Excursions in Geometry, Oxford Univ. Press, 1969, p. 84.
%D A103710 S. Reese, A universal parabolic constant, 2004, preprint.
%H A103710 Vincenzo Librandi, <a href="/A103710/b103710.txt">Table of n, a(n) for n = 1..10000</a>
%H A103710 J. L. Diaz-Barrero and W. Seaman, <a href="http://www.jstor.org/stable/pdfplus/27646363.pdf?acceptTC=true">A limit computed by integration</a>, Problem 810 and Solution, College Math. J., 37 (2006), 316-318, equation (5).
%H A103710 S. R. Finch, <a href="http://arxiv.org/abs/2001.00578">Mathematical Constants, Errata and Addenda</a>, 2012, section 8.1.
%H A103710 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51018">Review Zbl 1291.51018</a>, zbMATH 2015.
%H A103710 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51016">Review Zbl 1291.51016</a>, zbMATH 2015.
%H A103710 H. Khelif, <a href="http://images-archive.math.cnrs.fr/L-arbelos-Partie-II.html#nb4">L’arbelos, Partie II, Généralisations de l’arbelos</a>, Images des Mathématiques, CNRS, 2014.
%H A103710 J. Pahikkala, <a href="http://planetmath.org/arbelosandparbelos">Arc Length Of Parabola</a>, PlanetMath.
%H A103710 S. Reese, <a href="https://adelphi.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=036c3e0a-935d-43b7-9042-1e8676a908fc">Pohle Colloquium Video Lecture: The universal parabolic constant, Feb 02 2005</a>
%H A103710 S. Reese, Jonathan Sondow, Eric W. Weisstein, <a href="https://mathworld.wolfram.com/UniversalParabolicConstant.html">MathWorld: Universal Parabolic Constant</a>
%H A103710 Manas Shetty, Prajwal DSouza, Sparsha Kumari, Vinton Adrian Rebello, <a href="https://prajwalsouza.github.io/universal-parabolic-constant.html">Where is the Parabola? The Parabolic Constant Mystery</a>
%H A103710 Jonathan Sondow, <a href="http://arxiv.org/abs/1210.2279">The parbelos, a parabolic analog of the arbelos</a>, arXiv 2012, Amer. Math. Monthly, 120 (2013), 929-935.
%H A103710 E. Tsukerman, <a href="http://arxiv.org/abs/1210.5580">Solution of Sondow's problem: a synthetic proof of the tangency property of the parbelos</a>, arXiv 2012, Amer. Math. Monthly, 121 (2014), 438-443.
%H A103710 Wikipedia, <a href="http://en.wikipedia.org/wiki/Universal_parabolic_constant">Universal parabolic constant</a>
%H A103710 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A103710 Equals 2*Integral_{x = 0..1} sqrt(1 + x^2) dx. - _Peter Bala_, Feb 28 2019
%e A103710 2.29558714939263807403429804918949038759783220363858348392997534664...
%t A103710 RealDigits[ Sqrt[2] + Log[1 + Sqrt[2]], 10, 111][[1]] (* _Robert G. Wilson v_ Feb 14 2005 *)
%o A103710 (Maxima) fpprec: 100$ ev(bfloat(sqrt(2) + log(1 + sqrt(2)))); /* _Martin Ettl_, Oct 17 2012 */
%o A103710 (PARI) sqrt(2)+log(1+sqrt(2)) \\ _Charles R Greathouse IV_, Mar 08 2013
%Y A103710 A002193 + A091648.
%Y A103710 Cf. A103711, A103712, A222362, A232716, A232717.
%K A103710 cons,easy,nonn
%O A103710 1,1
%A A103710 Sylvester Reese and _Jonathan Sondow_, Feb 13 2005