cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103711 Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its latus rectum: (sqrt(2) + log(1 + sqrt(2)))/2.

This page as a plain text file.
%I A103711 #90 Feb 16 2025 08:32:56
%S A103711 1,1,4,7,7,9,3,5,7,4,6,9,6,3,1,9,0,3,7,0,1,7,1,4,9,0,2,4,5,9,4,7,4,5,
%T A103711 1,9,3,7,9,8,9,1,6,1,0,1,8,1,9,2,9,1,7,4,1,9,6,4,9,8,7,6,7,3,3,2,2,0,
%U A103711 5,4,8,3,1,3,4,2,0,6,6,5,6,3,3,4,2,0,4,7,2,1,3,1,1,8,9,4,8,8,0,7,7,9,5,8,7
%N A103711 Decimal expansion of the ratio of the length of the latus rectum arc of any parabola to its latus rectum: (sqrt(2) + log(1 + sqrt(2)))/2.
%C A103711 Just as all circles are similar, all parabolas are similar. Just as the ratio of a semicircle to its diameter is always Pi/2, the ratio of the length of the latus rectum arc of any parabola to its latus rectum is (sqrt(2) + log(1 + sqrt(2)))/2.
%C A103711 Let c = this constant and a = e - exp((c+Pi)/2 - log(Pi)), then a = .0000999540234051652627... and c - 10*(-log(exp(a) - a - 1) - 19) = .000650078964115564700067717... - _Gerald McGarvey_, Feb 21 2005
%C A103711 Half the universal parabolic constant A103710 (the ratio of the length of the latus rectum arc of any parabola to its focal parameter). Like Pi, it is transcendental.
%C A103711 Is it a coincidence that this constant is equal to 3 times the expected distance A103712 from a randomly selected point in the unit square to its center? (Reese, 2004; Finch, 2012)
%D A103711 H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
%D A103711 C. E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, pp. 286-288.
%D A103711 C. S. Ogilvy, Excursions in Geometry, Oxford Univ. Press, 1969, p. 84.
%D A103711 S. Reese, A universal parabolic constant, 2004, preprint.
%H A103711 Vincenzo Librandi, <a href="/A103711/b103711.txt">Table of n, a(n) for n = 1..10000</a>
%H A103711 J. L. Diaz-Barrero and W. Seaman, <a href="http://www.jstor.org/stable/pdfplus/27646363.pdf?acceptTC=true">A limit computed by integration</a>, Problem 810 and Solution, College Math. J., 37 (2006), 316-318, equation (5).
%H A103711 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Mathematical Constants, Errata and Addenda</a>, arXiv:2001.00578 [math.HO], 2012-2024, section 8.1.
%H A103711 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51018">Review Zbl 1291.51018</a>, zbMATH 2015.
%H A103711 M. Hajja, <a href="https://zbmath.org/?q=an:1291.51016">Review Zbl 1291.51016</a>, zbMATH 2015.
%H A103711 H. Khelif, <a href="http://images-archive.math.cnrs.fr/L-arbelos-Partie-II.html#nb4">L’arbelos, Partie II, Généralisations de l’arbelos</a>, Images des Mathématiques, CNRS, 2014.
%H A103711 J. Pahikkala, <a href="http://planetmath.org/arclengthofparabola">Arc Length Of Parabola</a>, PlanetMath.
%H A103711 S. Reese, <a href="http://gaia.adelphi.edu/cgi-bin/makehtmlmov-css.pl?rtsp://gaia.adelphi.edu:554/General_Lectures/Pohle_Colloquiums/pohle200502.mov,pohle200502.mov,256,200">Pohle Colloquium Video Lecture: The universal parabolic constant, Feb 02 2005</a>
%H A103711 S. Reese and Jonathan Sondow, <a href="https://mathworld.wolfram.com/UniversalParabolicConstant.html">Universal Parabolic Constant</a>, MathWorld
%H A103711 Jonathan Sondow, <a href="http://arxiv.org/abs/1210.2279">The parbelos, a parabolic analog of the arbelos</a>, arXiv 2012, Amer. Math. Monthly, 120 (2013), 929-935.
%H A103711 E. Tsukerman, <a href="http://arxiv.org/abs/1210.5580">Solution of Sondow's problem: a synthetic proof of the tangency property of the parbelos</a>, arXiv 2012, Amer. Math. Monthly, 121 (2014), 438-443.
%H A103711 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UniversalParabolicConstant.html">Universal Parabolic Constant</a>
%H A103711 Wikipedia, <a href="http://en.wikipedia.org/wiki/Universal_parabolic_constant">Universal parabolic constant</a>
%H A103711 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F A103711 Equals Integral_{x = 0..1} sqrt(1 + x^2) dx. - _Peter Bala_, Feb 28 2019
%F A103711 Equals Sum_{n>=0} (-1)^(n + 1)*binomial(2*n, n)/((4*n^2 - 1)*4^n). - _Antonio Graciá Llorente_, Dec 16 2024
%e A103711 1.14779357469631903701714902459474519379891610181929174196498767332...
%t A103711 RealDigits[(Sqrt[2] + Log[1 + Sqrt[2]])/2, 10, 111][[1]] (* _Robert G. Wilson v_, Feb 14 2005 *)
%t A103711 N[Integrate[Sqrt[1 + x^2], {x, 0, 1}], 120] (* _Clark Kimberling_, Jan 06 2014 *)
%Y A103711 Equal to (A103710)/2 = (A002193 + A091648)/2 = 3*(A103712).
%Y A103711 Cf. A103711, A222362, A232716, A232717.
%K A103711 cons,easy,nonn
%O A103711 1,3
%A A103711 Sylvester Reese and _Jonathan Sondow_, Feb 13 2005