cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103713 Decimal expansion of the area of the surface generated by revolving about the y-axis that part of the curve y = log x lying in the 4th quadrant.

This page as a plain text file.
%I A103713 #30 Feb 16 2025 08:32:56
%S A103713 7,2,1,1,7,9,9,7,2,4,2,0,7,0,4,6,9,6,4,6,8,7,7,3,2,7,6,9,8,0,0,6,6,7,
%T A103713 6,7,9,0,2,7,0,5,7,6,1,7,9,7,6,0,5,0,0,6,4,6,0,8,8,2,6,7,4,6,1,3,1,3,
%U A103713 0,3,6,4,8,6,1,0,9,7,6,9,6,5,1,4,6,2,1,9,2,1,0,9,7,7,6,9,8,2,9,3,2,9,9,3,4
%N A103713 Decimal expansion of the area of the surface generated by revolving about the y-axis that part of the curve y = log x lying in the 4th quadrant.
%C A103713 Equal to Pi times its analog for the parabola (see A103710).
%D A103713 C. E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, p. 288.
%D A103713 S. Reese, A universal parabolic constant, 2004, preprint.
%H A103713 S. R. Finch, <a href="http://arxiv.org/abs/2001.00578">Mathematical Constants, addenda, sec. 8.1</a>
%H A103713 S. Reese, <a href="http://gaia.adelphi.edu/cgi-bin/makehtmlmov-css.pl?rtsp://gaia.adelphi.edu:554/General_Lectures/Pohle_Colloquiums/pohle200502.mov,pohle200502.mov,256,200">Pohle Colloquium Video Lecture: The universal parabolic constant, February 2, 2005</a>
%H A103713 S. Reese and J. Sondow, <a href="https://mathworld.wolfram.com/UniversalParabolicConstant.html">MathWorld: Universal Parabolic Constant</a>
%H A103713 Wikipedia, <a href="http://en.wikipedia.org/wiki/Universal_parabolic_constant">Universal parabolic constant</a>
%F A103713 Pi*(sqrt(2) + log(1 + sqrt(2))).
%e A103713 7.21179972420704696468773276980066767902705761797605...
%t A103713 RealDigits[Pi*(Sqrt[2]+Log[1+Sqrt[2]]),10,120][[1]] (* or *) RealDigits[Pi* (Sqrt[2]+ArcSinh[1]),10,120][[1]] (* _Harvey P. Dale_, May 02 2011 *)
%o A103713 (PARI) Pi*(sqrt(2) + log(1 + sqrt(2))) \\ _Michel Marcus_, Jul 06 2015
%Y A103713 Cf. A000796*A103710. See also A103714.
%K A103713 cons,easy,nonn
%O A103713 1,1
%A A103713 Sylvester Reese and _Jonathan Sondow_, Feb 21 2005