cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103714 Decimal expansion of the area of the surface generated by revolving one arch of the cosine curve about the x-axis.

This page as a plain text file.
%I A103714 #33 Feb 16 2025 08:32:56
%S A103714 1,4,4,2,3,5,9,9,4,4,8,4,1,4,0,9,3,9,2,9,3,7,5,4,6,5,5,3,9,6,0,1,3,3,
%T A103714 5,3,5,8,0,5,4,1,1,5,2,3,5,9,5,2,1,0,0,1,2,9,2,1,7,6,5,3,4,9,2,2,6,2,
%U A103714 6,0,7,2,9,7,2,2,1,9,5,3,9,3,0,2,9,2,4,3,8,4,2,1,9,5,5,3,9,6,5,8,6,5,9,8,6
%N A103714 Decimal expansion of the area of the surface generated by revolving one arch of the cosine curve about the x-axis.
%C A103714 Equal to Pi times twice its analog for the parabola (see A103710).
%D A103714 Clyde E. Love, Differential and Integral Calculus, 4th ed., Macmillan, 1950, p. 288.
%D A103714 Sylvester Reese, A universal parabolic constant, 2004, preprint.
%H A103714 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020-2022, sec. 8.1.
%H A103714 Sylvester Reese, <a href="https://adelphi.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=036c3e0a-935d-43b7-9042-1e8676a908fc">Pohle Colloquium Video Lecture: The universal parabolic constant</a>, February 2005.
%H A103714 Sylvester Reese and Jonathan Sondow, <a href="https://mathworld.wolfram.com/UniversalParabolicConstant.html">MathWorld: Universal Parabolic Constant</a>.
%H A103714 Wikipedia, <a href="http://en.wikipedia.org/wiki/Universal_parabolic_constant">Universal parabolic constant</a>.
%F A103714 2*Pi*(sqrt(2) + log(1 + sqrt(2))).
%e A103714 14.423599448414093929375465539601335358054115235952...
%t A103714 RealDigits[2*Pi*(Sqrt[2] + Log[1 + Sqrt[2]]), 10, 120][[1]] (* _Amiram Eldar_, May 31 2023 *)
%Y A103714 Cf. 2*A000796*A103710. See also A103713.
%K A103714 cons,easy,nonn
%O A103714 2,2
%A A103714 Sylvester Reese and _Jonathan Sondow_, Feb 21 2005