This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103716 #12 Jan 17 2015 23:22:00 %S A103716 1,1025,60526249,61978938025,605263128567754849,605263138567754849, %T A103716 170971856382109814342232401,175075181098169912564190119249, %U A103716 10338014371627802833957102351534201,413520574906423083987893722912609 %N A103716 Numerators of sum_{k=1..n} 1/k^10 =: Zeta(10,n). %C A103716 a(n) gives the partial sums, Zeta(10,n), of Euler's Zeta(10). Zeta(k,n) is also called H(k,n) because for k=1 these are the harmonic numbers H(n) = A001008/A002805. %C A103716 For the denominators see A103717 and for the rationals Zeta(10,n) see the W. Lang link under A103345. %F A103716 a(n) = numerator(sum_{k=1..n} 1/k^10). %F A103716 G.f. for rationals Zeta(10, n): polylogarithm(10, x)/(1-x). %t A103716 s=0;lst={};Do[s+=n^1/n^11;AppendTo[lst,Numerator[s]],{n,3*4!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jan 24 2009 *) %t A103716 Table[ HarmonicNumber[n, 10] // Numerator, {n, 1, 10}] (* _Jean-François Alcover_, Dec 04 2013 *) %Y A103716 For k=1..9 see: A001008/A002805, A007406/A007407, A007408/A007409, A007410/A007480, A099828/A069052, A103345/A103346, A103347/A103348, A103349/A103350, A103351/A103352. %K A103716 nonn,frac,easy %O A103716 1,2 %A A103716 _Wolfdieter Lang_, Feb 15 2005