cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103718 Triangle of coefficients of certain polynomials used with prime numbers as variables in the computation of the array A103728.

This page as a plain text file.
%I A103718 #27 Aug 28 2019 15:53:09
%S A103718 1,2,-1,5,-4,1,17,-17,7,-1,74,-85,45,-11,1,394,-499,310,-100,16,-1,
%T A103718 2484,-3388,2359,-910,196,-22,1,18108,-26200,19901,-8729,2282,-350,29,
%U A103718 -1,149904,-227708,185408,-89733,26985,-5082,582,-37,1,1389456,-2199276,1896380,-993005,332598,-72723,10320,-915,46,-1
%N A103718 Triangle of coefficients of certain polynomials used with prime numbers as variables in the computation of the array A103728.
%C A103718 The g.f. for the sequence {b(N,p)}, with b(N,p) the number of cyclically inequivalent two-color, N bead necklaces with p beads of one color and N-p beads of the other color is, for prime numbers p, G(p(n),x):=P(p(n)-1,x)/((1-x)^(p(n)-1)*(1-x^p(n))), with the numerator polynomial P(p(n)-1,x):= sum(r(n,k)*x^k,k=0..p(n)-1) and the row polynomials of this triangle r(n,k):=sum(a(k,m)*p(n)^m,m=0..k). p(n)=A000040(n) (prime numbers).
%C A103718 Row sums (signed) give A000142(k)=k!. Row sums (unsigned) coincide with A007680(k)=(2*k+1)*k!, k>=0.
%C A103718 The (unsigned) column sequences are, for m=0..10: A000774, A081052, A103719-A103727.
%H A103718 W. Lang, <a href="/A103718/a103718.txt">Initial section of triangular array.</a>
%F A103718 a(k, m) = ((-1)^m)*(|S1(k+1, m+1)| + |S1(k+1, m+2)|) = ((-1)^m)*(|S1(k+2, m+2)|-k*|S1(k+1, m+2)|), with the (signed) Stirling number triangle S1(n, m) = A048994(n, m), n >= m >= 0.
%F A103718 a(0, 0)=1, a(k, 0) = (k-1)! + k*a(k-1, 0); a(k, m) = -a(k-1, m-1) + k*a(k-1, m), m > 0 and a(k, m)=0 if k < m.
%F A103718 Let B = (n+1)-st row of Stirling cycle numbers (unsigned, A008275); say a,b,c,d,.... Then n-th row of present triangle = ((a+b), (b+c), (c+d), ..., (d)). E.g., 4th row of the Stirling cycle numbers = (6, 11, 6, 1). Then third row of A103718 = ((6+11), (11+6), (6+1), (1)) = (17, 17, 7, 1). - _Gary W. Adamson_, May 07 2006
%e A103718 Triangle begins:
%e A103718     1;
%e A103718     2,   -1;
%e A103718     5,   -4,    1;
%e A103718    17,  -17,    7,   -1;
%e A103718    74,  -85,   45,  -11,    1;
%e A103718   394, -499,  310, -100,   16,   -1;
%e A103718   ...
%t A103718 a[0, 0] = 1; a[k_, 0] := (k - 1)! + k*a[k - 1, 0]; a[k_, m_]:= If[k<m, 0, -a[k - 1, m - 1] + k a[k - 1, m]]; Flatten[Table[a[k, m], {k, 0, 9}, {m, 0, k}]] (* _Indranil Ghosh_, Mar 11 2017 *)
%o A103718 (PARI) a(k, m) = if(m==0, if(k==0, 1, (k - 1)! + k*a(k - 1, 0)) , if(k<m, 0, -a(k - 1, m - 1) + k*a(k - 1, m)));
%o A103718 {for(k=0, 9, for(m=0, k, print1(a(k, m),", ");); print(););} \\ _Indranil Ghosh_, Mar 11 2017
%Y A103718 Cf. A008275.
%K A103718 sign,easy,tabl
%O A103718 0,2
%A A103718 _Wolfdieter Lang_, Feb 24 2005
%E A103718 More terms from _Indranil Ghosh_, Mar 11 2017