A103728 Coefficients of numerator polynomials of g.f.s for a certain necklace problem involving prime numbers.
1, 0, 1, -1, 1, 1, -3, 5, -3, 1, 1, -5, 13, -17, 13, -5, 1, 1, -9, 41, -109, 191, -229, 191, -109, 41, -9, 1, 1, -11, 61, -203, 457, -731, 853, -731, 457, -203, 61, -11, 1, 1, -15, 113, -527, 1713, -4111, 7537, -10767, 12113, -10767, 7537, -4111, 1713, -527, 113, -15, 1, 1, -17, 145, -773, 2899, -8117, 17587
Offset: 1
Examples
Triangle begins: [1, -0]; [1, -1, 1]; [1, -3, 5, -3, 1]; [1, -5, 13, -17, 13, -5, 1]; [1, -9, 41,-109, 191, -229, 191, -109, 41, -9, 1]; ... n=3: G(p(3),x)=G(5,x)=(1-3*x+5*x^2-3*x^3+1*x^4)/((1-x^5)*(1-x)^4) generates the necklace sequence A008646. A103718(3,m), m=0..3, is [17,-17,7,-1]. Therefore (17-17*p(n)+7*p(n)^2-1*p(n)^3 )/3! gives, for n>=1, the third column [ -3,-17,-109,...].
Links
- W. Lang, Array and more comments.
Comments