cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103769 Trinomial transform of central binomial coefficients A001405.

Original entry on oeis.org

1, 4, 21, 123, 757, 4788, 30817, 200784, 1320093, 8740284, 58193673, 389233287, 2613338091, 17602627006, 118892784555, 804951501469, 5461228061541, 37120212399708, 252720891884473, 1723088114793535, 11763751150648785
Offset: 0

Views

Author

Paul Barry, Feb 15 2005

Keywords

Crossrefs

Cf. A082760.

Programs

  • Mathematica
    CoefficientList[Series[((3*x+1-(21*x^2-10*x+1)^(1/2))/(2*x*(3*x-4)*(7*x-1)))^(1/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)

Formula

a(n) = sum_{k=0..2n} T(n,k)*C(k,floor(k/2)), where T(n,k) is given by A027907.
a(n) = sum_{k=0..n} sum_{j=0..n} C(n,j)*C(j,k)*C(j+k,floor((j+k)/2)).
G.f.: ((3*x+1-(21*x^2-10*x+1)^(1/2))/(2*x*(3*x-4)*(7*x-1)))^(1/2). - Mark van Hoeij, Nov 16 2011
Conjecture: n*(2n+1)*a(n) +2(-61n^2+57n-20)*a(n-1) +3*(205n^2-523*n+346) * a(n-2) -72*(n-2)*(16n-33)*a(n-3) +567*(n-2)*(n-3)*a(n-4)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ 7^(n+1/2)/sqrt(5*Pi*n). - Vaclav Kotesovec, Oct 24 2012