cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103774 Number of ways to write n! as product of squarefree numbers.

This page as a plain text file.
%I A103774 #18 Aug 23 2020 04:00:26
%S A103774 1,1,2,2,6,10,42,42,82,204,1196,1556,10324,34668,104948,104964,873540,
%T A103774 1309396,11855027,25238220,91193575,453628255,5002616219,5902762219,
%U A103774 21142729523,122981607092,189706055368,547296181656,7291700021313,14330422534833,202498591157970
%N A103774 Number of ways to write n! as product of squarefree numbers.
%C A103774 a(n) = A050320(A000142(n)).
%C A103774 From _Gus Wiseman_, Aug 20 2020: (Start)
%C A103774 Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of n!. For example, The a(2) = 1 through a(6) = 10 set multipartitions are:
%C A103774   {1}  {12}    {1}{1}{12}    {1}{1}{123}      {1}{1}{12}{123}
%C A103774        {1}{2}  {1}{1}{1}{2}  {1}{12}{13}      {1}{12}{12}{13}
%C A103774                              {1}{1}{1}{23}    {1}{1}{1}{12}{23}
%C A103774                              {1}{1}{2}{13}    {1}{1}{1}{2}{123}
%C A103774                              {1}{1}{3}{12}    {1}{1}{2}{12}{13}
%C A103774                              {1}{1}{1}{2}{3}  {1}{1}{3}{12}{12}
%C A103774                                               {1}{1}{1}{1}{2}{23}
%C A103774                                               {1}{1}{1}{2}{2}{13}
%C A103774                                               {1}{1}{1}{2}{3}{12}
%C A103774                                               {1}{1}{1}{1}{2}{2}{3}
%C A103774 (End)
%H A103774 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>.
%e A103774 n=5, 5! = 1*2*3*4*5 = 120 = 2 * 2 * 2 * 3 * 5: a(5)=#{2*2*2*3*5,2*2*2*15,2*2*6*5,2*2*30,2*2*3*10,2*6*10}=6.
%t A103774 sub[w_, e_] := Block[{v=w}, v[[e]]--; v]; ric[w_, k_] := ric[w, k] = If[Max[w] == 0, 1, Block[{e, s, p = Flatten@ Position[Sign@w, 1]}, s = Select[ Prepend[#, First@p] & /@ Subsets[Rest@p], Total[1/2^#] <= k &]; Sum[ric[sub[w, e], Total[1/2^e]], {e, s}]]]; a[n_] := ric[ Sort[ Last /@ FactorInteger[n!]], 1]; Array[a, 22] (* _Giovanni Resta_, Sep 30 2019 *)
%Y A103774 A103775 is the strict case.
%Y A103774 A157612 is the case of superprimorials.
%Y A103774 A001055 counts factorizations.
%Y A103774 A045778 counts strict factorizations.
%Y A103774 A048656 counts squarefree divisors of factorials.
%Y A103774 A050320 counts factorizations into squarefree numbers.
%Y A103774 A050326 counts strict factorizations into squarefree numbers.
%Y A103774 A076716 counts factorizations of factorials.
%Y A103774 A089259 counts set multipartitions of integer partitions.
%Y A103774 A116540 counts normal set multipartitions.
%Y A103774 A157612 counts strict factorizations of factorials.
%Y A103774 Cf. A000110, A005117, A008480, A124010, A318360.
%Y A103774 Factorial numbers: A000142, A007489, A022559, A027423, A071626, A325272, A325617, A336498.
%K A103774 nonn
%O A103774 1,3
%A A103774 _Reinhard Zumkeller_, Feb 15 2005
%E A103774 a(17)-a(18) from _Amiram Eldar_, Sep 30 2019
%E A103774 a(19)-a(31) from _Giovanni Resta_, Sep 30 2019