This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103774 #18 Aug 23 2020 04:00:26 %S A103774 1,1,2,2,6,10,42,42,82,204,1196,1556,10324,34668,104948,104964,873540, %T A103774 1309396,11855027,25238220,91193575,453628255,5002616219,5902762219, %U A103774 21142729523,122981607092,189706055368,547296181656,7291700021313,14330422534833,202498591157970 %N A103774 Number of ways to write n! as product of squarefree numbers. %C A103774 a(n) = A050320(A000142(n)). %C A103774 From _Gus Wiseman_, Aug 20 2020: (Start) %C A103774 Also the number of set multipartitions (multisets of sets) of the multiset of prime factors of n!. For example, The a(2) = 1 through a(6) = 10 set multipartitions are: %C A103774 {1} {12} {1}{1}{12} {1}{1}{123} {1}{1}{12}{123} %C A103774 {1}{2} {1}{1}{1}{2} {1}{12}{13} {1}{12}{12}{13} %C A103774 {1}{1}{1}{23} {1}{1}{1}{12}{23} %C A103774 {1}{1}{2}{13} {1}{1}{1}{2}{123} %C A103774 {1}{1}{3}{12} {1}{1}{2}{12}{13} %C A103774 {1}{1}{1}{2}{3} {1}{1}{3}{12}{12} %C A103774 {1}{1}{1}{1}{2}{23} %C A103774 {1}{1}{1}{2}{2}{13} %C A103774 {1}{1}{1}{2}{3}{12} %C A103774 {1}{1}{1}{1}{2}{2}{3} %C A103774 (End) %H A103774 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a>. %e A103774 n=5, 5! = 1*2*3*4*5 = 120 = 2 * 2 * 2 * 3 * 5: a(5)=#{2*2*2*3*5,2*2*2*15,2*2*6*5,2*2*30,2*2*3*10,2*6*10}=6. %t A103774 sub[w_, e_] := Block[{v=w}, v[[e]]--; v]; ric[w_, k_] := ric[w, k] = If[Max[w] == 0, 1, Block[{e, s, p = Flatten@ Position[Sign@w, 1]}, s = Select[ Prepend[#, First@p] & /@ Subsets[Rest@p], Total[1/2^#] <= k &]; Sum[ric[sub[w, e], Total[1/2^e]], {e, s}]]]; a[n_] := ric[ Sort[ Last /@ FactorInteger[n!]], 1]; Array[a, 22] (* _Giovanni Resta_, Sep 30 2019 *) %Y A103774 A103775 is the strict case. %Y A103774 A157612 is the case of superprimorials. %Y A103774 A001055 counts factorizations. %Y A103774 A045778 counts strict factorizations. %Y A103774 A048656 counts squarefree divisors of factorials. %Y A103774 A050320 counts factorizations into squarefree numbers. %Y A103774 A050326 counts strict factorizations into squarefree numbers. %Y A103774 A076716 counts factorizations of factorials. %Y A103774 A089259 counts set multipartitions of integer partitions. %Y A103774 A116540 counts normal set multipartitions. %Y A103774 A157612 counts strict factorizations of factorials. %Y A103774 Cf. A000110, A005117, A008480, A124010, A318360. %Y A103774 Factorial numbers: A000142, A007489, A022559, A027423, A071626, A325272, A325617, A336498. %K A103774 nonn %O A103774 1,3 %A A103774 _Reinhard Zumkeller_, Feb 15 2005 %E A103774 a(17)-a(18) from _Amiram Eldar_, Sep 30 2019 %E A103774 a(19)-a(31) from _Giovanni Resta_, Sep 30 2019