This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103794 #15 Jun 04 2024 17:05:42 %S A103794 2,2,2,2,6,2,2,2,6,3,2,40,7,5,13,3,3,2,7,18,47,8,6,2,26,3,42,2,13,8,2, %T A103794 8,328,8,9,45,27,13,76,15,52,111,5,15,50,287,16,5,40,23,110,368,23,68, %U A103794 28,96,81,150,3,143,4,12,403,4,45,11,83,21,96,5,109,350,128,304,38,4,163 %N A103794 Smallest number b such that b^prime(n) - (b-1)^prime(n) is prime. %C A103794 Conjecture: sequence is defined for all positive indices. %C A103794 For p=prime(n), Eisenstein's irreducibility criterion can be used to show that the polynomial (x+1)^p-x^p is irreducible, which is a necessary (but not sufficient) condition for a(n) to exist. - _T. D. Noe_, Dec 05 2005 %F A103794 a(n) = A222119(n) + 1. - _Ray Chandler_, Feb 26 2017 %e A103794 2^prime(1)-1^prime(1)=3 is prime, so a(1)=2; %e A103794 2^prime(5)-1^prime(5)=2047 has a factor of 23; %e A103794 ... %e A103794 6^prime(5)-5^prime(5)=313968931 is prime, so a(5)=6; %p A103794 f:= proc(n) local p,b; %p A103794 p:= ithprime(n); %p A103794 for b from 2 do %p A103794 if isprime(b^p - (b-1)^p) then return b fi %p A103794 od %p A103794 end proc: %p A103794 map(f, [$1..80]); # _Robert Israel_, Jun 04 2024 %t A103794 Do[p=Prime[k]; n=2; nm1=n-1; cp=n^p-nm1^p; While[ !PrimeQ[cp], n=n+1; nm1=n-1; cp=n^p-nm1^p]; Print[n], {k, 1, 200}] %Y A103794 Cf. A103795, A066180, A058013, A222119. %K A103794 nonn %O A103794 1,1 %A A103794 _Lei Zhou_, Feb 24 2005