cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103806 Primes p such that 2p - 33 and 2p + 33 are both primes.

This page as a plain text file.
%I A103806 #16 Sep 08 2022 08:45:17
%S A103806 2,5,7,13,19,23,37,47,53,67,73,103,137,157,163,173,193,227,233,277,
%T A103806 313,347,353,397,443,457,613,733,863,877,983,1087,1153,1213,1327,1447,
%U A103806 1493,1733,1747,1787,1867,2053,2063,2153,2237,2377,2383,2503,2557,2657,2683
%N A103806 Primes p such that 2p - 33 and 2p + 33 are both primes.
%C A103806 If, e.g., -29 is not prime (Mathematica considers -prime as prime), then the first four terms should be omitted.
%H A103806 Harvey P. Dale, <a href="/A103806/b103806.txt">Table of n, a(n) for n = 1..1000</a>
%F A103806 p, 2p-33 and 2p+33 all are primes.
%t A103806 Select[Range[2000], PrimeQ[ # ] && PrimeQ[2# + 33] && PrimeQ[2# - 33] &]
%t A103806 Select[Prime[Range[400]],AllTrue[2#+{33,-33},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Sep 10 2016 *)
%o A103806 (Magma) [p: p in PrimesUpTo(3000)| IsPrime(2*p+33) and IsPrime(2*p-33) ]; // _Vincenzo Librandi_, Jan 28 2011
%Y A103806 Cf. A103802, A103803, A103804, A103805.
%K A103806 nonn
%O A103806 1,1
%A A103806 _Zak Seidov_, Feb 16 2005