cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103821 A Whitney transform of the central binomial coefficients A000984.

Original entry on oeis.org

1, 3, 11, 43, 179, 771, 3395, 15171, 68515, 311907, 1428835, 6578531, 30414435, 141105251, 656588899, 3063038051, 14321092195, 67088405091, 314825048675, 1479654425187, 6963888239203, 32815960756835, 154813864252003
Offset: 0

Views

Author

Paul Barry, Feb 16 2005

Keywords

Comments

Partial sums of A006139. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)).

Programs

  • Mathematica
    CoefficientList[Series[1/((1-x)*Sqrt[1-4*x-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)

Formula

G.f. : 1/((1-x)sqrt(1-4x-4x^2));
a(n)=sum{k=0..n, sum{i=0..n, C(k, i-k)}*C(2k, k)}.
Conjecture: n*a(n) +(2-5n)*a(n-1) +2*a(n-2)+4*(n-1)*a(n-3)=0. - R. J. Mathar, Dec 14 2011
a(n) ~ sqrt(34+23*sqrt(2))*(2+2*sqrt(2))^n/(7*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012