cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103826 Unitary arithmetic numbers (those for which the arithmetic mean of the unitary divisors is an integer).

This page as a plain text file.
%I A103826 #19 Dec 10 2024 05:23:21
%S A103826 1,3,5,6,7,9,11,12,13,14,15,17,19,21,22,23,24,25,27,28,29,30,31,33,35,
%T A103826 37,38,39,41,42,43,44,45,46,47,48,49,51,53,54,55,56,57,59,60,61,62,63,
%U A103826 65,66,67,69,70,71,73,75,76,77,78,79,81,83,84,85,86,87,88,89,91,92,93
%N A103826 Unitary arithmetic numbers (those for which the arithmetic mean of the unitary divisors is an integer).
%C A103826 The arithmetic means of the unitary arithmetic numbers are in A103827.
%C A103826 From _Amiram Eldar_, Mar 10 2023: (Start)
%C A103826 Union of the odd numbers (A005408) and twice the numbers that are not the sum of 2 squares (A022544).
%C A103826 The asymptotic density of this sequence is 1. (End)
%H A103826 Charles R Greathouse IV, <a href="/A103826/b103826.txt">Table of n, a(n) for n = 1..10000</a>
%e A103826 12 is a unitary arithmetic number because the unitary divisors of 12 are 1,3,4 and 12 and (1+3+4+12)/4=5 is an integer.
%p A103826 with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end:utau:=n->nops(unitdiv(n)):usigma:=n->add(unitdiv(n)[j],j=1..nops(unitdiv(n))): p:=proc(n) if type(usigma(n)/utau(n),integer)=true then n else fi end:seq(p(n),n=1..103);
%t A103826 udiQ[n_]:=IntegerQ[Mean[Select[Divisors[n],GCD[#,n/#]==1&]]]; Select[ Range[ 100],udiQ] (* _Harvey P. Dale_, May 20 2012 *)
%t A103826 Select[Range[100], IntegerQ[Times @@ ((1 + Power @@@ FactorInteger[#])/2)] &] (* _Amiram Eldar_, Jun 14 2022 *)
%o A103826 (PARI) is(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2]+1)%2^#f~==0 \\ _Charles R Greathouse IV_, Sep 01 2015
%Y A103826 Cf. A005408, A022544, A103827, A034444, A034448.
%K A103826 nonn
%O A103826 1,2
%A A103826 _Emeric Deutsch_, Feb 17 2005