This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A103826 #19 Dec 10 2024 05:23:21 %S A103826 1,3,5,6,7,9,11,12,13,14,15,17,19,21,22,23,24,25,27,28,29,30,31,33,35, %T A103826 37,38,39,41,42,43,44,45,46,47,48,49,51,53,54,55,56,57,59,60,61,62,63, %U A103826 65,66,67,69,70,71,73,75,76,77,78,79,81,83,84,85,86,87,88,89,91,92,93 %N A103826 Unitary arithmetic numbers (those for which the arithmetic mean of the unitary divisors is an integer). %C A103826 The arithmetic means of the unitary arithmetic numbers are in A103827. %C A103826 From _Amiram Eldar_, Mar 10 2023: (Start) %C A103826 Union of the odd numbers (A005408) and twice the numbers that are not the sum of 2 squares (A022544). %C A103826 The asymptotic density of this sequence is 1. (End) %H A103826 Charles R Greathouse IV, <a href="/A103826/b103826.txt">Table of n, a(n) for n = 1..10000</a> %e A103826 12 is a unitary arithmetic number because the unitary divisors of 12 are 1,3,4 and 12 and (1+3+4+12)/4=5 is an integer. %p A103826 with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k], n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end:utau:=n->nops(unitdiv(n)):usigma:=n->add(unitdiv(n)[j],j=1..nops(unitdiv(n))): p:=proc(n) if type(usigma(n)/utau(n),integer)=true then n else fi end:seq(p(n),n=1..103); %t A103826 udiQ[n_]:=IntegerQ[Mean[Select[Divisors[n],GCD[#,n/#]==1&]]]; Select[ Range[ 100],udiQ] (* _Harvey P. Dale_, May 20 2012 *) %t A103826 Select[Range[100], IntegerQ[Times @@ ((1 + Power @@@ FactorInteger[#])/2)] &] (* _Amiram Eldar_, Jun 14 2022 *) %o A103826 (PARI) is(n)=my(f=factor(n)); prod(i=1,#f~, f[i,1]^f[i,2]+1)%2^#f~==0 \\ _Charles R Greathouse IV_, Sep 01 2015 %Y A103826 Cf. A005408, A022544, A103827, A034444, A034448. %K A103826 nonn %O A103826 1,2 %A A103826 _Emeric Deutsch_, Feb 17 2005