cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103827 Arithmetic means of the divisors of unitary arithmetic numbers (i.e., of those for which the arithmetic mean of the unitary divisors is an integer, A103826).

This page as a plain text file.
%I A103827 #18 Jun 14 2022 02:27:22
%S A103827 1,2,3,3,4,5,6,5,7,6,6,9,10,8,9,12,9,13,14,10,15,9,16,12,12,19,15,14,
%T A103827 21,12,22,15,15,18,24,17,25,18,27,21,18,18,20,30,15,31,24,20,21,18,34,
%U A103827 24,18,36,37,26,25,24,21,40,41,42,20,27,33,30,27,45,28,30,32,36,30,33,49
%N A103827 Arithmetic means of the divisors of unitary arithmetic numbers (i.e., of those for which the arithmetic mean of the unitary divisors is an integer, A103826).
%C A103827 The unitary arithmetic numbers are in A103826.
%H A103827 Amiram Eldar, <a href="/A103827/b103827.txt">Table of n, a(n) for n = 1..10000</a>
%F A103827 a(n) = A034448(A103826(n))/A034444(A103826(n)). - _Amiram Eldar_, Jun 19 2019
%e A103827 a(8) = 5 because the eighth unitary arithmetic number is A103826(8) = 12, the unitary divisors of 12 are 1, 3, 4 and 12 and (1 + 3 + 4 + 12)/4 = 5.
%p A103827 with(numtheory):unitdiv:=proc(n) local A, k: A:={}: for k from 1 to tau(n) do if gcd(divisors(n)[k],n/divisors(n)[k])=1 then A:=A union {divisors(n)[k]} else A:=A fi od end:utau:=n->nops(unitdiv(n)):usigma:=n->add(unitdiv(n)[j],j=1..nops(unitdiv(n))): p:=proc(n) if type(usigma(n)/utau(n), integer)=true then usigma(n)/utau(n) else fi end:seq(p(n),n=1..109);
%t A103827 Select[Table[Mean[Select[Divisors[n],GCD[#,n/#]==1&]],{n,150}],IntegerQ] (* _Harvey P. Dale_, May 20 2012 *)
%t A103827 Select[Times @@ ((1 + Power @@@ FactorInteger[#])/2) & /@ Range[100], IntegerQ] (* _Amiram Eldar_, Jun 14 2022 *)
%Y A103827 Cf. A034444, A034448, A103826.
%K A103827 nonn
%O A103827 1,2
%A A103827 _Emeric Deutsch_, Feb 17 2005