A103863 Hamming distance between n and A102370(n) (in binary).
0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 1, 3, 2, 4, 4, 5, 0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 2, 4, 3, 5, 5, 6, 0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 1, 2, 1, 3, 3, 4, 0, 1, 1, 2, 0, 2, 2, 3, 0, 1, 1, 3, 2, 4, 4, 5, 0, 1, 1, 2, 0, 2, 2, 3, 0
Offset: 0
References
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier/North Holland, 1978, p. 8.
Links
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers [pdf, ps].
- David Applegate, Benoit Cloitre, Philippe Deléham and N. J. A. Sloane, Sloping binary numbers: a new sequence related to the binary numbers, J. Integer Seq. 8 (2005), no. 3, Article 05.3.6, 15 pp.
- Saleem Bhatti, Channel coding; Hamming distance.
- Alexander Bogomolny, Distance Between Strings.
- National Institute of Standards and Technology, Hamming distance.
Programs
-
Mathematica
f[n_] := Block[{k = 1, s = 0, l = Max[2, Floor[ Log[2, n + 1] + 2]]}, While[ k < l, If[ Mod[n + k, 2^k] == 0, s = s + 2^k]; k++ ]; s]; hammingdistance[n_] := Count[ IntegerDigits[ BitXor[n, f[n] + n], 2], 1]; Table[ hammingdistance[n], {n, 0, 104}] (* Robert G. Wilson v, Apr 12 2005 *)
Formula
a(A104235(n)) = 0.
Extensions
More terms from Robert G. Wilson v, Apr 12 2005
Comments