cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A103880 Square array T(n,k) read by antidiagonals: denominators of Stirling numbers of first kind with negative argument S1(-n,k), n,k>=0.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 24, 36, 8, 1, 1, 120, 288, 216, 16, 1, 1, 720, 7200, 3456, 1296, 32, 1, 1, 5040, 14400, 432000, 41472, 7776, 64, 1, 1, 40320, 235200, 2592000, 25920000, 497664, 46656, 128, 1, 1, 362880, 11289600, 889056000, 51840000
Offset: 0

Views

Author

Ralf Stephan, Feb 20 2005

Keywords

Examples

			1, 0, 0, 0, 0, 0,
1, -1, 1, -1, 1, -1,
1/2, -3/4, 7/8, -15/16, 31/32, -63/64,
1/6, -11/36, 85/216, -575/1296, 3661/7776, -22631/46656,
1/24,-25/288,415/3456,-5845/41472,76111/497664,-952525/5971968,
		

Crossrefs

Numerators are in A103879. Cf. A008969.

Programs

  • PARI
    T(n,k)=denominator(1/n!*polcoeff(Ser(1/prod(i=1,n,1+x/i)),k))

Formula

T(n, k) = (-1)^(k+1) * Sum[i=1..n, C(n, i)*(-1)^i*i^(-k) ].
G.f. of n-th row: 1/n! * 1/Prod[i=1..n, 1+x/i ].
Showing 1-1 of 1 results.