cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A103881 Square array T(n,k) (n >= 1, k >= 0) read by antidiagonals: coordination sequence for root lattice A_n.

This page as a plain text file.
%I A103881 #69 Jul 09 2023 12:14:43
%S A103881 1,1,2,1,6,2,1,12,12,2,1,20,42,18,2,1,30,110,92,24,2,1,42,240,340,162,
%T A103881 30,2,1,56,462,1010,780,252,36,2,1,72,812,2562,2970,1500,362,42,2,1,
%U A103881 90,1332,5768,9492,7002,2570,492,48,2,1,110,2070,11832,26474,27174,14240,4060,642,54,2,1,132,3080,22530,66222,91112,65226,26070,6040,812,60,2
%N A103881 Square array T(n,k) (n >= 1, k >= 0) read by antidiagonals: coordination sequence for root lattice A_n.
%C A103881 T(n,k) is the number of integer sequences of length n+1 with sum zero and sum of absolute values 2k. - _R. H. Hardin_, Feb 23 2009
%H A103881 Muniru A Asiru, <a href="/A103881/b103881.txt">Table of n, a(n) for n = 1..5050</a> (antidiagonals 1 to 100, flattened)
%H A103881 M. Baake and U. Grimm, <a href="http://arXiv.org/abs/cond-mat/9706122">Coordination sequences for root lattices and related graphs</a>, arXiv:cond-mat/9706122 [cond-mat.stat-mech], 1997.
%H A103881 J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (<a href="http://neilsloane.com/doc/Me220.pdf">pdf</a>).
%H A103881 Arun Padakandla, P. R. Kumar, and Wojciech Szpankowski, <a href="https://www.cs.purdue.edu/homes/arunpr/preprints/DiscreteGeometryViaEhrhart.pdf">On the Discrete Geometry of Differential Privacy via Ehrhart Theory</a>, November 2017.
%H A103881 Arun Padakandla, P. R. Kumar, and Wojciech Szpankowski, <a href="https://www.cs.purdue.edu/homes/spa/papers/soda-privacy.pdf">Preserving Privacy and Fidelity via Ehrhart Theory</a>, July 2017.
%H A103881 Joan Serra-Sagrista, <a href="http://dx.doi.org/10.1016/S0020-0190(00)00119-8">Enumeration of lattice points in l_1 norm</a>, Inf. Proc. Lett. 76 (1-2) (2000) 39-44.
%F A103881 T(n,k) = Sum_{i=1..n} C(n+1, i)*C(k-1, i-1)*C(n-i+k, k), T(n,0)=1.
%F A103881 G.f. of n-th row: (Sum_{i=0..n} C(n, i)^2*x^i)/(1-x)^n.
%F A103881 From _G. C. Greubel_, May 24 2023: (Start)
%F A103881 T(n, k) = Sum_{j=0..n} binomial(n,j)^2 * binomial(n+k-j-1, n-1) (array).
%F A103881 T(n, k) = (n+1)*binomial(n+k-1,k)*hypergeometric([-n,1-n,1-k], [2,1-n-k], 1), with T(n, k) = 1 (array).
%F A103881 t(n, k) = (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1), with t(n, 0) = 1 (antidiagonals).
%F A103881 Sum_{k=0..n-1} t(n, k) = A047085(n). (End)
%F A103881 From _Peter Bala_, Jul 09 2023: (Start)
%F A103881 T(n,k) = [x^k] Legendre_P(n, (1 + x)/(1 - x)).
%F A103881 (n+1)*T(n+1,k) = (n+1)*T(n+1,k-1) + (2*n+1)*(T(n,k) + T(n,k-1)) - n*(T(n-1,k) - T(n-1,k-1)). (End)
%e A103881 Array begins:
%e A103881   1,   2,     2,      2,       2,        2,         2,          2, ... A040000;
%e A103881   1,   6,    12,     18,      24,       30,        36,         42, ... A008458;
%e A103881   1,  12,    42,     92,     162,      252,       362,        492, ... A005901;
%e A103881   1,  20,   110,    340,     780,     1500,      2570,       4060, ... A008383;
%e A103881   1,  30,   240,   1010,    2970,     7002,     14240,      26070, ... A008385;
%e A103881   1,  42,   462,   2562,    9492,    27174,     65226,     137886, ... A008387;
%e A103881   1,  56,   812,   5768,   26474,    91112,    256508,     623576, ... A008389;
%e A103881   1,  72,  1332,  11832,   66222,   271224,    889716,    2476296, ... A008391;
%e A103881   1,  90,  2070,  22530,  151560,   731502,   2777370,    8809110, ... A008393;
%e A103881   1, 110,  3080,  40370,  322190,  1815506,   7925720,   28512110, ... A008395;
%e A103881   1, 132,  4422,  68772,  643632,  4197468,  20934474,   85014204, ... A035837;
%e A103881   1, 156,  6162, 112268, 1219374,  9129276,  51697802,  235895244, ... A035838;
%e A103881   1, 182,  8372, 176722, 2206932, 18827718, 120353324,  614266354, ... A035839;
%e A103881   1, 210, 11130, 269570, 3838590, 37060506, 265953170, 1511679210, ... A035840;
%e A103881   ...
%e A103881 Antidiagonals:
%e A103881   1;
%e A103881   1,  2;
%e A103881   1,  6,    2;
%e A103881   1, 12,   12,    2;
%e A103881   1, 20,   42,   18,    2;
%e A103881   1, 30,  110,   92,   24,    2;
%e A103881   1, 42,  240,  340,  162,   30,    2;
%e A103881   1, 56,  462, 1010,  780,  252,   36,   2;
%e A103881   1, 72,  812, 2562, 2970, 1500,  362,  42,  2;
%e A103881   1, 90, 1332, 5768, 9492, 7002, 2570, 492, 48,  2;
%p A103881 T:=proc(n,k) option remember; local i;
%p A103881 if k=0 then 1 else
%p A103881 add( binomial(n+1,i)*binomial(k-1,i-1)*binomial(n-i+k,k),i=1..n); fi;
%p A103881 end:
%p A103881 g:=n->[seq(T(n-i,i),i=0..n-1)]:
%p A103881 for n from 1 to 14 do lprint(op(g(n))); od:
%t A103881 T[n_, k_]:= (n+1)*(n+k-1)!*HypergeometricPFQ[{1-k,1-n,-n}, {2,-n-k+1}, 1]/(k!*(n-1)!); T[_, 0]=1; Flatten[Table[T[n-k, k], {n,12}, {k,0,n-1}]] (* _Jean-François Alcover_, Dec 27 2012 *)
%o A103881 (GAP) T:=Flat(List([1..12],n->Concatenation([1],List([1..n-1],k->Sum([1..n],i->Binomial(n-k+1,i)*Binomial(k-1,i-1)*Binomial(n-i,k)))))); # _Muniru A Asiru_, Oct 14 2018
%o A103881 (PARI)
%o A103881 A103881(n,k) = if(k==0, 1, sum(j=1, n-k, binomial(n-k+1, j)*binomial(k-1, j-1)*binomial(n-j, k)));
%o A103881 for(n=1, 15, for(k=0, n-1, print1(A103881(n,k), ", "))) \\ _G. C. Greubel_, Oct 16 2018; May 24 2023
%o A103881 (Magma)
%o A103881 A103881:= func< n,k | k le 0 select 1 else (&+[Binomial(n-k+1, j)*Binomial(k-1, j-1)*Binomial(n-j, k): j in [1..n-k]]) >;
%o A103881 [A103881(n,k): k in [0..n-1], n in [1..15]]; // _G. C. Greubel_, Oct 16 2018; May 24 2023
%o A103881 (SageMath)
%o A103881 def A103881(n,k): return 1 if k==0 else (n-k+1)*binomial(n-1,k)*hypergeometric([k-n,1+k-n,1-k], [2,1-n], 1).simplify()
%o A103881 flatten([[A103881(n,k) for k in range(n)] for n in range(1,16)]) # _G. C. Greubel_, May 24 2023
%Y A103881 Rows include A040000, A008458, A005901, A008383, A008385, A008387, A008389, A008391, A008393, A008395, A035837, A035838, A035839, A035840, A035841 - A035876.
%Y A103881 Columns include A002376, A001621.
%Y A103881 Main diagonal is in A103882.
%Y A103881 Cf. A047085, A103884, A103903, A103998, A143007.
%K A103881 nonn,tabl
%O A103881 1,3
%A A103881 _Ralf Stephan_, Feb 20 2005
%E A103881 Corrected by _N. J. A. Sloane_, Dec 15 2012, at the suggestion of Manuel Blum